Theo giả thiết ta có : \(x^2+4y^2=12xy\Leftrightarrow\left(x+2y\right)^2=16xy\)
Do \(x,y>0\Rightarrow x+2y=4\sqrt{xy}\)
Khi đó ta có :
\(lg\left(x+2y\right)=lg4+\frac{1}{2}lgxy\Leftrightarrow lg\left(x+2y\right)-2lg2=\frac{1}{2}\left(lgx+lgy\right)\)
Vậy với \(x,y>0\) và \(x^2+4y^2=12xy\) thì \(lg\left(x+2y\right)-2lg2=\frac{1}{2}\left(lgx+lgy\right)\)