Rút gọn biểu thức :
Bài 1 3^n+1 - 2.3^n=
Bài 2 10^99(10+x)-x(10^99 + x^99)=
cho: A=x10-99*x99+99*x8-99*x7+...+99*x2-99*x+1 tại x =100
tính giá trị biểu thức A
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 1:
c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
c,xy-2x+5y-12=0
xy-2x+5y-12+2=0+2
xy-2x+5y-10=2
xy-2x+5y-5.2=-2
x.(y-2)+5.(y-2)=2
(y-2).(x+5)=2
Sau đó bạn tự lập bảng
Bài 1: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 2: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Bài 4 .Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
K MIK NHA BẠN ^^
Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000
Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500
Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480
Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3
= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)
=n.(n+1).(n+2)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
Bài 1:
Số các số hạng trong tổng C là:
\(\left(999-1\right):2+1=500\)( số hạng)
=> \(C=\left(999+1\right).500:2=250000\)
Bài 2:
Tổng B có số số hạng là: (99-1):1+1=99(số hạng)
=> \(B=\left(99+1\right)\times99:2=4950\)
Bài 3:
Số các số hạng trong tổng D là:
\(\left(998-10\right):2+1=495\)( số hạng)
=> \(D=\left(998+10\right).495:2=249480\)
Bài 4:
A = 1.2 + 2.3 + 3.4 + ... + n(n+1)
3A = 1.2.3 + 2.3.3 + 3.4.3+...+3n.(n+1)
3A = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+n.(n+1){(n+2)-(n-1)}
3A = 1.2.3 + 2.3.4 - 1.2.3 +3.4.5 - 2.3.4 + .... + n(n+1)(n+2) - n(n+1)(n-1)
3A = n(n +1)(n+2)
=> A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Vậy \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 1:Rút gọn biểu thức: 2,5.5n-3 x 10 +5n - 6.5n-1
Bài 1.Rút gọn A = \(\sqrt{x^2+\dfrac{2x^2}{3}}\) với x<0
Bài 2.Rút gọn biểu thức \(\left(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{30}-\sqrt{6}}{\sqrt{5}-1}\right)\):\(\dfrac{2}{2\sqrt{5}-\sqrt{6}}\)
Bài 3.Cho ba biểu thức A = a\(\sqrt{b}\) + b\(\sqrt{a}\);B = \(a\sqrt{a}-b\sqrt{b}\) ;C = a-b.Trong ba biểu thức trên biểu thức bằng biểu thức \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\) với a,b>0
Bài 7.Cho B = \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{98}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{100}}\).Giá trị của biểu thức B là
Bài 8.Gọi M là giá trị nhỏ nhất của \(\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\) và N là giá trị lớn nhất của \(\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\).Tìm M và N
Giúp mình với!Mình đang cần gấp
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
A=1+3+3^2+3^3+......+3^99+3^100
đề bài là rút gọn biểu thức nha
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\\ \Rightarrow3A=3+3^2+3^3+...+3^{100}+3^{101}\\ \Rightarrow3A-A=3^{101}-1\\ \Rightarrow2A=3^{101}-1\\ \Rightarrow A=\left(3^{101}-1\right).\dfrac{1}{2}\\ \Rightarrow\dfrac{3^{101}}{2}-\dfrac{1}{2}.\)
\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)
Ta có: \(3A=3+3^2+3^3+...+3^{99}+3^{100}\)
Khi đó: \(3A-A=3+3^2+3^3+...+3^{99}+3^{100}+3^{101}-\left(1+3+3^2+3^3+...+3^{99}+3^{100}\right)\)
\(=3^{101}-1\)
\(\Leftrightarrow2A=3^{101}-1\)
Vậy \(A=\left(3^{101}-1\right):2\)
Bài 1:Rút gọn biểu thức: 2,5.5n-3 x 10 +5n - 6.5n-1
Bài 1: Tính:
B=1+(2+3+4+....+98+99)
Bài 2: Tính:
C=1+3+5+....+997+999
Bài 3: Tính:
D=10+12+14+...+994+996+998
Bài 4: Tính:
A=1.2+2.3+3.4+...+n.(n+1)
Bài 5:Tính:
B=1.2.3.+2.3.4+....+(n-1).n.(n+1)
Bài 6: Chứng minh rằng không có số hữu tỉ nào thỏa mãn:
a) x2=7
b) x2-3x=1
c)x+với x khác 1 và -1
1. B = 1+ (2+ 3 +4+.... +98 +99)
= 1+ 98
= 99
2