\(\frac{9^{15}\cdot25^{43}}{27^{10}\cdot5^{85}}\)
AI GIẢI HỘ MIK NHÁ
\(^{\frac{15^{19}\cdot5^{10}}{9^{10}\cdot25^{14}}}\)
bn vt lớn dữ z -.-
\(\frac{15^{19}.5^{10}}{9^{10}.5^{14}}=\frac{3^{19}.5^{19}.5^{10}}{3^{20}.5^{14}}=\frac{3^{19}.5^{29}}{3^{20}.5^{14}}=\frac{5^{15}}{3}\)
\(\frac{15^{19}.5^{10}}{9^{10}.5^{14}}=\frac{3^{19}.5^{19}.5^{10}}{3^{20}.5^{14}}=\frac{3^{19}}{3^{20}}.\frac{5^{29}}{5^{14}}\)\(=\frac{1}{3}.\frac{5^{15}}{1}=\frac{5^{15}}{3}\)
Vậy ...
Học tốt ^^
TÌM X HỘ MIK NHA MÌNH CẢM ƠN\(\left(X+\frac{1}{1\cdot3}\right)+\left(X+\frac{1}{3\cdot5}\right)+...+\left(X+\frac{1}{23\cdot25}\right)=11\cdot X+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
tính:
\(\frac{3^6\cdot45^4-15^{13}\cdot5^{-9}}{27^4\cdot25^3+45^6}\)
1 tính
a)\(\frac{3^6\cdot45^4-15^{13}\cdot5^{-9}}{27^4\cdot25^3+45^6}\)
1)Tính
a.\(\frac{3^6\cdot45^4-15^{13}\cdot5^{-9}}{27^4\cdot25^3+45^6}\)
b.\(\frac{\left(\frac{2}{5}\right)^7\cdot5^7+\left(\frac{9}{4}\right)^3\div\left(\frac{3}{16}\right)^3}{2^7\cdot5^2+512}\)
Tính
\(\frac{9^{15}.25^{43}}{27^{10}.5^{85}}\)
\(\frac{9^{15}.25^{43}}{27^{10}.5^{85}}=\frac{\left(3^2\right)^{15}.\left(5^2\right)^{43}}{\left(3^3\right)^{10}.5^{85}}=\frac{3^{30}.5^{86}}{3^{30}.5^{85}}=5\)
\(\frac{9^{15}.25^{43}}{27^{10}.5^{85}}=\frac{\left(3^2\right)^{15}.\left(5^2\right)^{43}}{\left(3^3\right)^{10}.5^{85}}=\frac{3^{30}.5^{86}}{3^{30}.5^{85}}=1.5=5.\)
Chúc bạn học tốt!
a) 324 + [112- (112 + 324 ) - 230]
b) 53 . ( -15 ) + ( - 15 ) . 47
c) 43 . ( 53 - 81 ) + 53. ( 81 - 43 )
d) (192 - 37 + 85) - ( 85 + 192 )
Giải hộ mik vs ạ
tính thường hay tính nhanh vậy bạn?
Nguyễn Hoàng Thiên Di
tính thường cx đc mà tính nhanh càng tốt nha
đợi mik xíu vì giải hơi dài ạ
rút gọn biểu thức
a) \(\frac{20^5\cdot5^{10}}{\left(4\cdot25\right)^5}\)b)\(\frac{6^3+3\cdot6^2+3^3}{-13}\)c)\(\frac{125^{12}}{5^{13}\cdot25^{11}}\)d)\(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}\cdot2^0\right)\cdot2^3\)
e)\(\frac{81^{11}\cdot3^{17}}{27^{10}\cdot9^{15}}\)
\(x=\frac{2^3\cdot25^2}{10^2\cdot5^3}\)
\(x=\frac{2^3\cdot25^2}{10^2\cdot5^3}=\frac{2^3\cdot\left(5^2\right)^2}{\left(2\cdot5\right)^2\cdot5^3}\)
\(=\frac{2^3\cdot5^4}{2^2\cdot5^2\cdot5^3}=\frac{2^3\cdot5^4}{2^2\cdot5^5}=\frac{2}{5}\)
Vậy x = 2/5
x=2^3.25^2/10^2.5^3
x=8.625/100.125
x=5000/12500
x=10/25
x=0,4
\(x=\frac{2^3.25^2}{10^2.5^3}=\frac{2^3.5^4}{2^2.5^2.5^3}=\frac{2^3.5^4}{2^2.5^5}\)\(=\frac{2}{5}\)