tìm x, y
\(4x^2\)+\(2y^2\) +\(2y\)-4xy+1=0
tìm x,y,z biết : 4x^2 + 2y^2 + 2z^2 - 4xy - 2yz -2y - 8z +10 = 0
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
Tìm x,y,z thỏa mãn:
4x2+2y2+2z2-4xy-2yz+2y-8z+10<=0
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
\(\Leftrightarrow x^2+2y-4x=4x^2-4xy^2+y^4-2y+4\)
\(\Leftrightarrow2y+2y-4x=4x^2-x^2-4xy^2+y^4+4\)
\(\Leftrightarrow4y-4x=3x^2-y^2\left(4x-y^2\right)+4\)
\(\Leftrightarrow4y-4x-4=3x^2-y^2\left(4x-y^2\right)\)
\(\Leftrightarrow4\left(y-x-1\right)=3x^2-y^2\left(4x-y^2\right)\)
\(\Leftrightarrow4\left(y-x-1\right)=0\)
\(\Leftrightarrow y-x-1=\frac{0}{4}\)
\(\Leftrightarrow y-x-1=0\)
\(\Leftrightarrow y-x=0+1\)
\(\Leftrightarrow y-x=1\)
Vậy \(\hept{\begin{cases}y=x+1\\x=y-1\end{cases}}\)
Tìm x,y biết \(4x^2+2y^2+4xy+4x-2y+5=0\)
\(5x^2+4y^2-4xy+14x-4y+10=0\)
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm