Chứng tỏ rằng 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 60
Chia hết cho 5, 6, 7
a. chứng tỏ rằng : A = 1+ 2 +2 mũ 3 + 2 mũ 4 + ........+ 2 mũ 29 chia hết cho 7
b. chứng tỏ rằng : A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 90 chia hết cho 21
Tôi tên là Ngọc Anh . Năm nay Tôi 11 tuổi. Tôi không biết bài này
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
Cho A= 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 100
B= 5 + 5 mũ 2 + 5 mũ 3 +...... +5 mũ 96
C= 2 mũ 100 - 2 mũ 99 + 2 mũ 98 - 2 mũ 97 + ...+ 2 mũ 2 - 2
a) chứng tỏ rằng A chia hết cho 6 và 30
b) Chứng tỏ rằng B chia hết cho 6 và 31, 26, 126
c) Tinh giá trị của A,B,C
Cho S = 1+3+3 mũ 2 + 3 mũ 3+ 3 mũ 4+ 3 mũ 5+ 3 mũ 6+ 3 mũ 7+ 3 mũ 8+ 3 mũ 9.Chứng tỏ rằng S chia hết cho 4
b) chứng minh rằng hiệu abc - cba chia hết cho 11 (với a>c)
Chứng tỏ:
a)S=4+4 mũ 2+4 mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100 chia hết cho 5
b)S=2+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 2009+2 mũ 2010 chia hết cho 6
c)S=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101 chia hết cho 8
d)S=4 mũ 39+4 mũ 40+4 mũ 41 chia hết cho 28
AI XONG TRC MÌNH TICK NHA~
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba
b)Cm B=10 mũ 100 cộng 17 chia hết cho 9
c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2
mong mọi người trả lời giúp mik cảm ơn các bạn
Cho A = 2 mũ 0 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + ....+2 mũ 99 .
Chứng tỏ rằng tổng A chia hết cho 3
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
chứng tỏ rằng 5+5 mũ 2 +5 mũ 3 +5 mũ 4 +......5 mũ 29 + 5 mũ 20 chia hết cho 6
Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!