tam giác ABC vuông tại A
I là tâm đường tròn nội tiếp tam giác ABC; các tiếp điểm trên BC, CA,AB lần lượt là D,E,F
M là trung điểm AC
MI cắt AB tại N
DF cắt đường cao AH của tam giác ABC tại P
CMR tam giác ANP cân
HD: AN =AP=\(\frac{BC+AB-AC}{2}\)
Cho tam giác ABC vuông tại A và đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp của tam giác ABC, AHB, AHC.Chứng minh rằng :
a) AI vuông góc JK.
b) Tứ giác BJKC nội tiếp đường tròn.
a)\(\Delta AEC\)có góc ngoài là AEB=góc KAC+ góc ACE
Mà góc BAE = góc KAH; góc ACB = góc BAH => góc AEB = góc BAE
\(\Rightarrow\Delta ABE\)cân ở B và có BJ là phân giác
=>BJ vuông góc với AE
Tương tự có CJ vuông góc AD => AI vuông góc JK (I là trực tâm \(\Delta AJK\))
b)Dùng tính chất các phân giác ta có: góc BAI= góc \(\frac{BAC}{2}=\)\(\frac{\text{(góc B+góc C)}}{2}\)
=>Góc EAI=\(\frac{\text{(góc B+góc C)}}{2}\text{-góc EAI}\)\(\frac{\text{(góc B+góc C)}}{2}\text{- góc C}=\frac{\text{góc B}}{2}\)
Nhưng ta lại có góc EAI=JAI=EKJ (Cùng phụ góc AJK)
=>Góc EKJ= góc JBC(= góc B/2)
Lại có góc EKJ+góc JKC=180 độ (kề bù)
=>góc JBC+góc JKC=180 độ nên tứ giác BJKC nội típ
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp của tam giác ABC, tam giác AHB, tam giác AHC. Chứng minh AI vuông góc JK.
Cho tam giác ABC vuông tại A có AC>AB. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm của đường tròn nội tiếp với các cạnh AB,BC,CA lần lượt tại M,N,P.
a) Chứng minh tứ giác AMIP là hình vuông
b) Đường thẳng AI cắt PN tại D. Chứng minh 5 điểm M,B,N,O,I nằm trên một đường tròn
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm M ( khác A)
a) cm các tam giác IMB và tam giác IMC là tam giác cân
b) Đường thẳng MO cắt đường tròn (O) tại điểm N (khác M) và cắt cạnh BC tại P. cm sinˆBAC/2=IP/IN
c) Gọi các diểm D,E làn lượt là hình chiếu của điểm I trên các cạnh AB,AC. Gọi các điểm H,K lần lượt đối xứng với D,E qua điểm I . Biết AB+AC=3BC. CM các điểm B,C,H,K cùng thuộc 1 đường tròn.
2) Cho tam giác ABC vuông tại A, có đường cao AH, gọi I,J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, AHB, AHC.
a) C/m AI vuông góc với JK
b) C/m tứ giác BJKC nội tiếp đuợc đường tròn
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tâm O tại M. E là trung điểm của BC. ME cắt đường tròn tâm O tại N. Chứng minh góc BEI = góc ANI
cho tam giác ABC vuông tại A, đường cao AH. Gọi I,J,K lần lượt là tâm đường tròn nội tiếp tam giác ABC, AHB, AHC. C/M: AI vuông góc JK .
I là tâm dường tròn nội tiếp tam giác ABC, đường thẳng vuông góc với AI tại I cắt BC kéo dài tại D. Gọi H là hình chiếu của I trên AD
CMR: H nằm trên đường tròn ngoại tiếp tam giác ABC
cho tam giác ABC vuông tại A . I là tâm đường tròn nội tiếp tam giác có IH vuông góc với BC biết BH=5; CH=12. bán kính đường tròn nội tiếp bằng 6, một cạnh góc vuông =20. tính các cạnh của tam giác ABC