Tìm số tự nhiên n , sao cho 9n + 24 và n + 3 là số nguyên tố cùng nhau .
Tìm số tự nhiên n để các só 9n + 24 và 3n + 4 là các số nguyên tố cùng nhau
Tìm số tự nhiên n để 4n+3 và 2n+3 là số nguyên tố cùng nhau.
gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d
ta có 2n + 3 chia hết cho d
=> 2( 2n + 3) chia hết cho d
=> 4n + 6 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d
=> 4n + 6 - 4n - 3 chia hết cho d
=> 3 chia hết cho d
=> d = { 1,3}
để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3
=> n = 1,... t=B tự tìm nhé
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau.
Tìm số tự nhiên n để các số 7n + 13 và 2n + 4 là hai số nguyên tố cùng nhau
Giả sử \(7n+13\) và \(2n+4\) cùng chia hết cho số nguyên tố d
Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)
Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)
Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\) và \(2n+4\) là hai số nguyên tố cùng nhau
Đặt (7n + 13; 2n + 4) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)
\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d
\(\Rightarrow\) 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)
mà 7n + 13 \(⋮̸\)2
\(\Rightarrow\) d = 1
Vậy (7n + 13; 2n + 4) = 1
1. Tìm n để 9n+24 và 3n+4 là các số nguyên tố cùng nhau ?
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Cho m và n là các số tự nhiên, m là số tự nhiên lẻ. Chứng tỏ rằng m và mn+8 là hai số nguyên tố cùng nhau.
Gọi UCLN(m; mn + 8) là d
=> m chia hết cho d => mn chia hết cho d
và mn + 8 chia hết cho d
Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}
Mà m lẻ và m chia hết cho d => d lẻ
Do đó d = 1
=> UCLN(m; mn + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Chứng minh rằng có vô số số tự nhiên n để n + 15 và n + 72 là hai số nguyên tố cùng nhau