Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Master Ender
Xem chi tiết
GOT7 JACKSON
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 14:17

\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)

\(A_{min}=\frac{3}{2}\) khi \(x=4\)

\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)

\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)

Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại

Nguyễn Thị Vân Anh
Xem chi tiết
Trần Đức Thắng
30 tháng 9 2015 lúc 22:11

Đặt A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) => \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge1+2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=3\)

Vậy GTNN của \(\frac{1}{A}=3\)

=> GTLN của A là \(\frac{1}{3}\) tại x = 1 

Tín Đinh
Xem chi tiết
nguyễn thành
Xem chi tiết
Điệp Đỗ
Xem chi tiết
Trương Trần Duy Tân
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 5 2016 lúc 22:36

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))

Thầy Tùng Dương
Xem chi tiết
Nguyễn Nam Dương
17 tháng 1 2022 lúc 10:26

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

Khách vãng lai đã xóa
Nguyễn Nam Dương
17 tháng 1 2022 lúc 10:30

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

Khách vãng lai đã xóa
Hà Việt	Phương
17 tháng 1 2022 lúc 11:46

undefinedDạ đậy ạ,mong dc gp

Khách vãng lai đã xóa
Bin Mèo
Xem chi tiết