Xác định hệ số a,b,c để biểu thức A= x4 -2x3 +ax +b là bình phương của một đa thức
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
Xác định các hệ số a,b để đa thức sau là bình phương của một đa thức :
\(A=x^4-2x^3-x^2+ax+b\)
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+bA\)
\(x-a=x-2\)
\(=>a=2;b=0\)
~ Hok tốt ~
Xác định hệ số a;b để đa thức A= x4-2x3+3x2+ax+b là bình phương 1 đa thức
(Dùng phương pháp đồng nhất hệ số)
Xác định các hệ số a,b sao cho các đa thức sau viết được dưới dạng bình phương của một đa thức nào đó
a) x4 + 2x3 + 3x2 + ax + b
b) x4 + ax3 + bx2 - 8x + 1
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
xác định các hệ số a,b để đa thức
\(A=x^4-2x^3+3x^2+ax+b\) là bình phuong của 1 đa thức
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
Xác định hệ số a,b để đa thức
\(P\left(x\right)=x^4-2\cdot x^3+3\cdot x^2+ax+b\)
là bình phương của một đa thức
P(x) = x4 - 2x3 + 3x2 + ax + b
P(x) là bình phương của một đa thức => P(x) = ( x2 + cx + d )2
=> x4 - 2x3 + 3x2 + ax + b = ( x2 + cx + d )2
<=> x4 - 2x3 + 3x2 + ax + b = x4 + 2cx3 + ( 2d + c2 )x2 + 2cdx+ d2
( thực ra lớp 8 mới học HĐT nhưng để làm được bất đắc dĩ mình mới dùng :D )
Đồng nhất hệ số ta có : \(\hept{\begin{cases}2c=-2\\2d+c^2=3\\2cd=a\end{cases};b=d^2}\)=> \(\hept{\begin{cases}a=-2\\b=d=1\\c=-1\end{cases}}\)
Vậy ...
Quỳnh Legendd cho mình hỏi chút là C và d ở đâu vậy?
xác định hệ số a,b để A=x^4+2x^3+ax^2+ 2x+b là bình phương của một đa thức
giúp mik nhanh nhé mik đang cần gấp
Xác định hệ số a,b sao cho \(P=x^4+2x^3+ax^2+2x+b\)là bình phương của một đa thức.
\(P=x^4-2x^3-x^2+ax+b=\left[\pm\left(x^2+cx+d\right)\right]^2=\left(x^2+cx+d\right)^2\) (vì P là đa thức bậc 4, hệ số tự do là 1)
\(\Leftrightarrow P=x^4+c^2x^2+d^2+2cx^3+2dx^2+2cdx\)
\(\Leftrightarrow P=x^4+2cx^3+\left(c+2d\right)x^2+2cdx+d^2\)
2c = -2 c = -1
=> c2 + 2d = -1 => d = -1
a = 2cd a = 2
b = d2 b = 1
Vậy \(P=\left(x^2-x-1\right)^2\)
ghi nhàm đề :v
\(P=\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)
2c = 2 c = 1
=> c2 + 2d = a => a = 3
2cd = 2 d = 1
d2 = b b = 1
Vậy P = x4 + 2x3 + 3x2 + 2x + 1 = (x2 + x + 1)2
Xác định hệ số a,b để đa thức x4 + 1 chia hết cho đa thức x2 + ax + b
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =