Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 17:45

1.

\(y'=4x^3-4\left(m+1\right)x\)

\(y''=12x-4\left(m+1\right)\)

Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

2.

\(y'=4x^3-2\left(m+1\right)x\)

\(y''=12x^2-2\left(m+1\right)\)

Hàm đạt cực tiểu tại x=-1 khi:

\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)

nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 5 2021 lúc 12:18

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)

Minh Hảo Nguyễn Thị
Xem chi tiết
Quỳnh Cà Ri
Xem chi tiết
nguyễn huyền phương thảo
Xem chi tiết
DSQUARED2 K9A2
Xem chi tiết
nguyen thi be
Xem chi tiết
Thảo Ngọc
Xem chi tiết
Phương Linh
Xem chi tiết
Akai Haruma
1 tháng 10 2017 lúc 11:14

Lời giải:

Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)

Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)

a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)

Thử lại: \(y'=2x^2-2x\)

\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$

Vậy $m=2$

b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)

\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)

\(\Leftrightarrow m=\frac{4}{3}\)

Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$

Vậy không tồn tại $m$ thỏa mãn.

c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.

Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt

Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)

d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$

Với ĐKXĐ như phần c, áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)

Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)

\(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)

Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)

Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$