Cho tam giác ABC biết \(\widehat{\frac{A}{1}}\)=\(\widehat{\frac{B}{2}}\)=\(\widehat{\frac{C}{3}}\). Tính \(\widehat{A}\),\(\widehat{B}\),\(\widehat{C}\)
Bài 1 :
Cho tam giác ABC biết: \(\widehat{C}=\frac{1}{3}\widehat{B;}\)\(\widehat{B}=\frac{1}{2}\widehat{A}\)
Tính số đo \(\widehat{A}\).
Bài 2: Tính các góc của tam giác ABC biết:
a, \(3\widehat{A}\)\(=\)\(6\widehat{B}\)\(=\)\(3\widehat{C}\)
b, \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}=20\)độ
Giúp mik vs. C mơn các bn nhìu@@.
tính các góc của tam giá ABC biết
a)\(\widehat{A}=2\widehat{B}\); \(\widehat{C}-\widehat{B}=36\)
b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\)
b) Ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{\widehat{A}}{3}=30^0\Rightarrow\widehat{A}=30^0.3=90^0\\\frac{\widehat{B}}{1}=30^0\Rightarrow\widehat{B}=30^0.1=30^0\\\frac{\widehat{C}}{2}=30^0\Rightarrow\widehat{C}=30^0.2=60^0\end{matrix}\right.\)
Vậy số đo các góc của \(\Delta ABC\) lần lượt là: \(90^0;30^0;60^0.\)
Chúc bạn học tốt!
phần a đâu
Cho tam giác ABC=tam giác DEF. Tính số đo các góc của tam giác ABC biết \(\widehat{A}\)=\(\frac{1}{2}\widehat{E}\); \(\frac{1}{2}\widehat{B}\)= \(\frac{1}{3}\widehat{F}\)
Tổng ba góc của một tam giác là 180
vậy góc A=180*2/5 =72 biết \(\frac{1}{2}\)A là 1,E là 2
sau khi biết góc A thì tính góc E; E=180-72=108
Cứ tương tự mà bạn làm tiếp nhé giờ mình phải đi học rồi
Cho tam giác ABC có các cạnh a=BC; b=AC; c=AB. CMR:
a) \(a\widehat{A}+b\widehat{B}\ge a\widehat{B}+b\widehat{A}\)
b) \(a\widehat{A}+b\widehat{B}+c\widehat{C}\ge60^0\left(a+b+c\right)\)
c) \(a\left(\widehat{A}-60^0\right)+b\left(\widehat{B}-60^0\right)+c\left(\widehat{C}-60^0\right)\ge0\)
d) \(\frac{a\widehat{A}+b\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{b\widehat{B}+c\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{c\widehat{C}+a\widehat{A}}{\widehat{C}+\widehat{A}}\ge a+b+c\)
e) \(\frac{\left(a-b\right)\widehat{B}}{\widehat{A}+\widehat{B}}+\frac{\left(b-c\right)\widehat{C}}{\widehat{B}+\widehat{C}}+\frac{\left(c-a\right)\widehat{A}}{\widehat{C}+\widehat{A}}\le0\)
f) \(\frac{a\widehat{A}+b\widehat{B}+c\widehat{C}}{a+b+c}< 90^0\)
Cho tam giác ABC biết \(\widehat{A}=2\widehat{B}=4\widehat{C.}\) \(CMR:\frac{1}{AB}=\frac{1}{AC}+\frac{1}{BC}.\)
Mình đã làm rùi và rất ngại làm lại nên bạn chịu khó nhìn nha ! Vào TKHĐ của mình
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Cho tam giác ABC, AB = c, AC = b, BC = a và b + c = 2a. C/m:
a) \(2\sin\widehat{A}=\sin\widehat{B}+\sin\widehat{C}\)
b) \(\frac{2}{h\widehat{A}}=\frac{1}{h\widehat{B}}+\frac{1}{h\widehat{C}}\)( hA, hB, hC lần lượt là các đường cao kẻ từ các đỉnh A, B, C )
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
tính các góc của tam giá ABC biết
a)\(\widehat{A}=2\widehat{B}\); \(\widehat{C}-\widehat{B}=36\)
b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\)
a)Ta có:A+B+C=180(đ/l tông 3 góc t/giác)
Có: C-B=36
=>2C-2B=72
=>2C-A=72
=>A=2C-72
Lại có: C-B=36=>B=C-36
Vậy A+B+C=180
=>2C-72+C-36+C=180
=>(2C+C+C)-(72+36)=180
=>4C-108=180
=>4C=288
=>C=72
=>A=2.72-72=72
=>B=180-2.72=36
b) Câu còn lại bn áp dụng tc của dtsbn nhé!