b) Ta có:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{\widehat{A}}{3}=30^0\Rightarrow\widehat{A}=30^0.3=90^0\\\frac{\widehat{B}}{1}=30^0\Rightarrow\widehat{B}=30^0.1=30^0\\\frac{\widehat{C}}{2}=30^0\Rightarrow\widehat{C}=30^0.2=60^0\end{matrix}\right.\)
Vậy số đo các góc của \(\Delta ABC\) lần lượt là: \(90^0;30^0;60^0.\)
Chúc bạn học tốt!
phần a đâu