Cho tam giác ABC có \(\widehat{A}=130^0\). Gọi C', B' là các điểm sao cho AB là đường trung trực của CC' và AC là đường trung trực của BB'. Hai đường thẳng CB' và BC' cắt nhau tại A'. Hãy tìm bên trong tam giác A'BC điểm cách đều ba cạnh của tam giác đó
Bài 3. (3,0 điểm) Cho tam giác ABC có ba góc nhọn. Các điểm M, N, P lần lượt là trung điểm của cạnh BC, AB, AC. Gọi O là giao điểm các đường trung trực của tam giác ABC. Trên tia đối của tia MO lấy điểm D sao cho MO = MD. Trên tia đối của tia NO lấy điểm F sao cho NO = NF. Trên tia đối của tia PO lấy điểm E sao cho PO = PF.
a) Chứng minh ∆ANO = ∆BNF, từ đó suy ra AO = BF và AO // BF.
b) Chứng minh hình lục giác AFBDCE có 6 cạnh bằng nhau và 2 trong 6 cạnh đó đôi một song song.
Cho tam giác ABC có \(\widehat{A}\) = 45 độ ; \(\widehat{B}\) và \(\widehat{C}\) là góc nhọn . Vẽ AH vuông góc với BC tại H . Lấy điểm D sao cho : AB là đường trung trực của HD . Kẻ CK vuông góc vs BD tại K. CM : DA = DK
Cho tam giác ABC nhọn , O là giao điểm hai đường trung trực của AB và AC . Trên tia đối của tia OB lấy điểm D sao cho OB=OD
a, Chứng minh O thuộc đường trung trực của AD và CD
b, Chứng minh các tam giác ABD, CBD vuông
c, Biết góc ABC = 70 độ . Hãy tính số đo góc ADC.
Cho ΔABC vuông tại A, góc B bằng \(60^0\). Các điểm D và E lần lượt thuộc AC và AB sao cho \(\widehat{ABD}=20^0\) và \(\widehat{ACE}=10^0\). Gọi I là giao điểm của BD và CE. Vẽ điểm M sao cho BC là đường trung trực của IM. Vẽ điểm N sao cho AC là đường trung trực của NI. C/m ba điểm M,N,D thẳng hàng.
Please, help me!
Cho tam giác ABC vuông tại A (AB<AC) I là trung điểm BC, đường trung trực của BC cắt AC tại E, D thuộc tia đối của AC sao cho AD=AE. Nối BE. Chứng minh rằng
a) \(\widehat{BDE}=2\widehat{ACB}\)
b) BD cắt AI tại M. Chứng minh rằng MD=MA, MB=AC
c) DE<BC
d) Goi EI giao với BA tại K, CMR: BE vuông góc với KC
Cho \(\Delta ABC\) cân tại A \(\left(\widehat{A}< 90^o\right)\).Kẻ \(BD\perp AC\) \(\left(D\in AC\right)\),\(CE\perp AB\left(E\in AB\right)\), BD và CE cắt nhau tại H
a) C/m BD=CE
b)C/m \(\Delta BHC\) cân
c)C/m AH là đường trung trực của BC
d)Trên tia BD lấy điểm K sao cho D là trung điểm của BK. C/m \(\widehat{ECB}=\widehat{DKC}\)
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ, phân giác AD ( D thuộc BC). Kẻ đường cao BE cắt AD tại H
a) Chứng minh CH vuông góc với AB
b) Gọi F là giao điểm của CH và AB. Chứng minh AD là trung trực của đoạn EF
c)Kẻ EI vuông góc với HC tại I; FJ vuông góc với HB tại J. Chứng minh các đường thẳng EI, FJ và AD cùng đi qua một điểm O
d) Chứng minh AC - AF> OF - OC
Các bạn ơi giúp mình với nhé!