Rút gọn
\(\left(\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{2}{\sqrt{5}+\sqrt{3}}-4\right):\frac{2+\sqrt{3}}{\sqrt{3}-2}\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Rút gọn
G = \(\frac{3-2\sqrt{3}}{\sqrt{3}}+\frac{6}{3+\sqrt{3}}\)
H= \(\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}\)
i = \(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
K = \(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
N= \(\left(1-\frac{\sqrt{3}-1}{2}\right):\left(\frac{\sqrt{3}-1}{2}+2\right)\)
Rút gọn B=\(5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2\)
\(2B=5\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\sqrt{5}\right)^2+\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}-\sqrt{5}\right)^2 \)
\(=5\left(\left(\sqrt{3}+1\right)+\left(\sqrt{5}-1\right)-\sqrt{5}\right)^2+\left(\left(\sqrt{3}-1\right)+\left(\sqrt{5}+1\right)-\sqrt{5}\right)^2\)
\(=5\left(\sqrt{3}\right)^2+\left(\sqrt{3}\right)^2=5.3+3=18\)
\(\Rightarrow B=9\)
Rút gọn biểu thức
1) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8+2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
2) \(\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right):\left(\sqrt{5}-2\right)\)
3) \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
4) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
5) \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...-\frac{1}{\sqrt{98}-\sqrt{99}}+\frac{1}{\sqrt{99}-\sqrt{100}}\)
6) \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
7)\(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}+2\right)\left(\frac{\sqrt{2}+\sqrt{3}}{4\sqrt{2}}-\frac{\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(24+8\sqrt{6}\right)\left(\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
Sao làm hổng ai bảo đú.n/g vậy :(((
Rút gọn biểu thức
A= \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
a,\(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b,\(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\cdot\left(\frac{5}{12}-\frac{1}{\sqrt{6}}\right)\)rút gọn
rút gọn
\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(\frac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}-\frac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
\(\text{Rút gọn các căn thức sau:}\)
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(\sqrt{72}-5\sqrt{20}-2\sqrt{2}\right)\)
\(\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)
\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{4}}\)
K lm tắt nhé !
mik làm bài này
linh tinh
bn ơi
cho mik
xin 1 L-I-K-E
b,
d,
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)
\(=2\sqrt{5}+4-2\sqrt{5}+4\)
\(=8\)
Rút gọn biểu thức \({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5}\), ta được
A. \(\sqrt 3 \).
B. \(3\sqrt 3 \).
C. \(\frac{1}{{\sqrt 3 }}\).
D. 9.
\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)
Chọn D.
Rút gọn:
\(A=\left(\frac{4x\sqrt{x}+3x+9}{x+5\sqrt{x}+6}-\frac{3-\sqrt{x}}{2+\sqrt{x}}\right)\div\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{3+4\sqrt{x}}{x+5\sqrt{x}+6}\right)\)
\(B=\left(x-\sqrt{x}-2\right)\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{4-\sqrt{x}}{x-2\sqrt{x}}\right)\)