\(\frac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Tinh\(\frac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
A=\(\frac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{a^{ }b^{ }}+\sqrt[3]{b^2}}\)
Bài này bạn đăng ở box toán để được hỗ trợ tốt hơn nhé. Bạn copy đăng qua kia đi để mình xóa cho đỡ loãng các câu hỏi ở box văn
Rút gọn biểu thức:
Q=\(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Đặt \(\sqrt[3]{a}=x;\sqrt[3]{b}=y\)
=>\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}\)
\(=\dfrac{x^4+2x^2y^2+y^4-x^2y^2}{x^2+xy+y^2}\)
\(=\dfrac{\left(x^2+y^2\right)^2-\left(xy\right)^2}{x^2+xy+y^2}=\dfrac{\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}\)
\(=x^2-xy+y^2\)
\(=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)
Rút gọn: \(A=\frac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)với \(ab\ne0\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
Chứng minh đẳng thức với \(ab\ne0\)và \(a\ne b^3\)
\(\left(\sqrt[3]{a^4}+b^2\sqrt[3]{a^2}+b^4\right).\frac{\sqrt[3]{a^8}-b^6+b^4\sqrt[3]{a^2}-a^2b^2}{a^2b^2+b^2-b^8a^2-b^4}=a^2b^2\)
Rút gọn biểu thức:
Q = \(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{a}=x\\\sqrt[3]{b}=y\end{matrix}\right.\) thì ta có:
\(Q=\dfrac{x^4+x^2y^2+y^4}{x^2+xy+y^2}=\dfrac{\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}=x^2-xy+y^2\)
Vậy \(Q=\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}\)
Chứng minh rằng, nếu \(ab\ne0\)và \(a\ne b^3\)thì ta luôn có:
\(\left(\sqrt[3]{a^4}+b^2\sqrt[3]{a^2}+b^4\right).\frac{\left(\sqrt[3]{a^8}-b^6+b^4\sqrt[3]{a^2}-a^2b^2\right)}{a^2b^2+b^2-b^8a^2-b^4}=a^2b^2\)
Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.
Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:
\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)
\(\Leftrightarrow1,477=16\left(sai\right)\)
Vậy đề bài cho tào lao.
mình chép đúng đề mà chắc là đề sai thật mình làm mãi cx không ra như thế nên mới hỏi
\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)