Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
6.5-22 Kiều Quốc Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:10

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

Đỗ Tuệ Lâm
25 tháng 12 2021 lúc 22:04

a,xét hbh ABCD có:

AB//DC,AB=DC

=>AE//FC,AE=FC(AE=EB,DF=FC)

vậy tứ giác AECF là hình bình hành

b, tứ giác AEFD là hình bình hành 

Vì AE=DF,AE//DF(AB//DC,AE=EB,DF=FC)

c,xét tứ giác EBFD có:

EB//DF,EB=DF(AB//CD,AE=EB,DF=FC)

=>EI=KF(gt)

     EI//KF(gt)

vậy EIFK là hình bình hành (1)

lại có:

góc AFD và BFC đối xứng qua DC nên:

AFD=BFC(AFD+BFC=90 độ)

góc DFC=AFD+EFA+BEF+BFC=(EFA+BEF)+(AFD+BFC)=180 độ

       BFA=(EFA+BFE)+90 độ=180 độ

     =>BFA=90 độ(2)

Từ (1)và (2) suy ra:

EIFK là hình chữ nhật

d, đk: có 1 góc vuông tronh ABCD

b9,có hình AABC thật à:<

 

Em nhỏ gái
Xem chi tiết
huongkarry
Xem chi tiết
Hoàng Thị Mỹ Linh
Xem chi tiết
nguyễn quỳnh như
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 22:14

Bài 6:

a: Xét ΔABC có BD/BA=BM/BC

nên MD//AC

=>ME vuông góc với AB

=>E đối xứng M qua AB

b: Xét tứ giác AEBM có

D là trung điểm chung của AB và EM

MA=MB

Do đó; AEBM là hình thoi

Xét tứ giac AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

c: BM=BC/2=2cm

=>CAEBM=2*4=8cm

Trần Hoài
Xem chi tiết
Trần Hoài
Xem chi tiết
Dương Nguyễn Thảo Nguyên
Xem chi tiết
long nhật lê
Xem chi tiết
Quỳnh Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 23:03

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB