Tìm giá trị nhỏ nhất của các biểu thức:
A=/x-2011/+/x-200/
B=/x-2015/+/x-2013/
Tìm giá trị nhỏ nhất của biểu thức :
A=/x-2011/+/x-200/
B=/x-2015/+/x-2013/
Ta có: A = |x - 2011| + |x - 200|
=> A = |x - 2011| + |200 - x| \(\ge\)|x - 2011 + 200 - x| = |-1811| = 1811
Dấu "=" xảy ra <=> (x - 2011)(200 - x) \(\ge\)0
=> \(200\le x\le2011\)
Vậy MinA = 1811 <=> \(200\le x\le2011\)
Ta có: B = |x - 2015| + |x - 2013|
=> B = |x - 2015| + |2013 - x| \(\ge\)|x - 2015 + 2013 - x| = |-2| = 2
Dấu "=" xảy ra <=> (x - 2015)(2013 - x) \(\ge\)0
=> \(2013\le x\le2015\)
vậy MinB = 2 <=> \(2013\le x\le2015\)
Tìm giá trị nhỏ nhất của biểu thức:
A=|x-2011|+|x-2012|+|x-2013|+|x-2014|+|x-2015|
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)
tìm giá trị nhỏ nhất của biểu thức B= |x+2014| + |x-2013| + |x+2015|
Tìm giá trị nhỏ nhất của biểu thức sau: A = |x - 2013| + |x - 2014| + |x- 2015|
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)
\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)
\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)
Vậy \(A_{min}=2\) tại \(x=2014\)
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Tìm giá trị nhỏ nhất của biểu thức :
A = / x - 2013 / + / x - 2014 / + / x - 2015 /
Để A=|x-2013| + |x-2014| + |x-2015| có giá trị nhỏ nhất thì |x-2013| + |x-2014| + |x-2015 nhỏ nhất
=>|x-2013| + |x-2014| + |x-2015=0
Vậy A=0 là nhỏ nhất
Mk lm chưa đầy đủ còn nhiều thiếu sót bn thông cảm nha mk bận rồi
Tìm giá trị nhỏ nhất của biểu thức
A = | x - 2011 | + | x - 200 |
Tìm giá trị nhỏ nhất của biểu thức :
A = | x - 2011 | + | x - 200 |
Tìm giá trị nhỏ nhất của:
A=/x-2011/+/x-2012/+/x-2013/+/x-2014/+/x-2015/
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)
\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)
\(\left|x-2013\right|\ge0\)
\(\Rightarrow A\ge4+2+0=6\)
Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)
Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013