Bài 1. Cho tam giác ABC vuông tại A có AB = 9cm BC = 15cm lấy M thuộc BC sao cho CM = 4cm. Vẽ Mx vuông với BC cắt AC tại N
a)C/m: tam giác CMN ~ tam giácCAB, suy ra CM.AB = MN.CA
b) Tinh MN.
c) Tính tỉ số diện tích CMN và CAB
cho tam giác ABC vuông tại A có AB=9cm, BC=15cm. Lấy M thuộc BC sao cho CM=4cm , vẽ Mx vuông góc với BC cắt AC tại N
a) Cm tam giác CMN đồng dạng với tam giác CAB , suy ra CM.AB=MN.CA
b)Tính MN
c)tính tỉ số diện tích của tam giác CMN và diện tích tam giác CAB
Xét tam giác CMN và tam giác CAB có
góc C chung
góc BAC = góc CMN = 90 độ
=> tam giác CMN đồng dạng vs tam giác CAB
b) từ tam giác CMN ~ tam giác CAB ( cmt )
=> CM/AC= MN/AB => 4/12= MN/9 => MN = 3
c) Scmn/ Scab = ( MN/AB )^2 = 1/9
1, cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
2,tim x,y,zbiết :
a) 3(x-2) - 4(2x+1) - 5(2x+3) = 50
b) $$ :( 4- 1/3 I 2x +1I = 21/22
c) 3z-2y /37 = 5y- 3z / 15= 2z- 5x/2 va 10x -3y - 2z = -4
cho tam giavs abc vuông tại a có ab=9cm; bc=15cm. lấy m thuộc bc sao cho cm=4cm, vẽ mx vuông goác với bc cắt ac tại n
a, cm tam giác cmn đồng dạng tam giác cab, suy ra cm.ab=mn.ca
b, tính mn
c, tính tỉ số diện tích của tam giác cmn và diện tích tam giác cab
Cho tam giác ABC vuông tại A có AB=9cm BC=15cm lấy M thuộc BC sao cho CM=4cm vẽ Mx vuông với BC cắt AC tại N a)C/m: CMN~CAB, suy ra CM.AB=MN.CA b) Tinh MN. c) Tính tỉ số diện tích CMN và CAB
a.
Xét ▲CMN và ▲CAB có:
góc C chung
Góc M = A = 90o
Do đó: ▲CMN~▲CAB (g.g)
=> \(\dfrac{CM}{CA}=\dfrac{MN}{AB}\Rightarrow CM.AB=CA.MN\)
b.
▲ABC vuông tại A
=> BC2 = AB2 + AC2
=> AC2 = BC2 - AB2
=> AC2 = 152 - 92
=> AC = 12 (cm)
▲CMN~▲CAB
=> \(\dfrac{MN}{AB}=\dfrac{CM}{CA}\Rightarrow MN=\dfrac{AB.CM}{CA}=\dfrac{9.4}{12}=3\left(cm\right)\)
Vậy MN = 3 cm
c.
▲CMN~▲CAB
=> \(\dfrac{S_{CMN}}{S_{CAB}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{3}{9}\right)^2=\dfrac{9}{81}=\dfrac{1}{9}\)
cho tam giác abc vuông tại a có ab = 9cm , bc = 15cm . lấy m thuộc bc sao cho cm = 4cm , từ m vẽ đường thẳng vuông góc với bc cắt ac tại n
a) chứng minh tam giác cmn đồng dạng với tam giác cab
b) chứng minh cm.ab = mn.ca
c) tính tỉ số diện tích của tam giác cmn và tam giác cab
a, Xét Δ CMN và Δ CAB, có :
\(\widehat{CMN}=\widehat{CAB}=90^o\)
\(\widehat{MCN}=\widehat{ACB}\) (góc chung)
=> Δ CMN ∾ Δ CAB (g.g)
b, Ta có : Δ CMN ∾ Δ CAB (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{MN}{AB}\)
=> \(CM.AB=MN.CA\)
c, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(15^2=9^2+AC^2\)
=> \(15^2-9^2=AC^2\)
=> \(144=AC^2\)
=> AC = 12 (cm)
Ta có : Δ CMN ∾ Δ CAB (cmt)
=> \(\dfrac{NC}{BC}=\dfrac{CM}{CA}\)
=> \(\dfrac{NC}{15}=\dfrac{4}{12}\)
=> \(NC=\dfrac{15.4}{12}=5\left(cm\right)\)
Xét Δ MNC vuông tại M, có :
\(NC^2=NM^2+MC^2\)
=> \(5^2=NM^2+4^2\)
=> \(NM^2=9\)
=> NM = 3 (cm)
Xét Δ CMN và Δ CAB, có :
\(\dfrac{S_{\Delta_{CMN}}}{S_{\Delta_{CAB}}}=\dfrac{\dfrac{1}{2}.CM.MN}{\dfrac{1}{2}.AC.AB}=\dfrac{4.3}{12.9}=\dfrac{1}{9}\)
cho tam giác ABC vuong tại A có AB =9cm BC =15cm . trên BC lấy điểm M sao cho CM bằng 4cm . từ M vẽ tia Mx vuông góc với BC , Mx cắt AC tại N
a) chứng minh tam giác ABC đồng dạng với tam giác MNC
b) tính MN
C) tính tỉ số diện tích tam giác ABC và dien tích tam giác MNC
Bài của bạn Pé's Lì's trên Facebook
cho tam giác ABC vuong tại A có AB =9cm BC =15cm . trên BC lấy điểm M sao cho CM bằng 4cm . từ M vẽ tia Mx vuông góc với BC , Mx cắt AC tại N
a) chứng minh tam giác ABC đồng dạng với tam giác MNC
b) tính MN
c) tính tỉ số diện tích tam giác ABC và dien tích tam giác MNC
Đề có chỗ nhầm lẫn: Từ M vẽ tia Mx vuông góc với AC và cắt AC tại N
a) MN ⊥ AC; AB ⊥ AC => MN // AB
=> Tam giác CMN đồng dạng với ABC
b) MN/AB = CM/CB => MN/9 = 4/15 => MN = 9 . 4 /15
c) AC2 = BC2 - AB2 = 152 - 92 = 144
=> AC = 12
Diện tích ABC = 1/2 x 12 x 9
Vì CMN đồng dạng với ABC theo tỉ số đồng dạng là 4/15
=> Diện tích MNC = (4/15)2 x (diện tích ABC)
Bạn tự thay số rồi tính nhé
=......................................................................................................................................................may nhi olm
cái con giáo viên điên biết rooih còn đăng lên
cho tam giác ABC vuông cân tại A. Vẽ tam giác BCD vuông cân tại B thuộc nửa mặt phẳng BC không chứa A. Lấy M thuộc BC. Vẽ Mx vuông góc với MC tại M. Mx giao BD tại N. CM
a) tứ giác ABDC là hình thang vuông
b) Tam giác CMN vuông cân
cho tam giác ABC vuông cân tại A. Vẽ tam giác BCD vuông cân tại B thuộc nửa mặt phẳng BC không chứa A. Lấy M thuộc BC. Vẽ Mx vuông góc với MC tại M. Mx giao BD tại N. CM
a) tứ giác ABDC là hình thang vuông
b) Tam giác CMN vuông cân
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)