a.
Xét ▲CMN và ▲CAB có:
góc C chung
Góc M = A = 90o
Do đó: ▲CMN~▲CAB (g.g)
=> \(\dfrac{CM}{CA}=\dfrac{MN}{AB}\Rightarrow CM.AB=CA.MN\)
b.
▲ABC vuông tại A
=> BC2 = AB2 + AC2
=> AC2 = BC2 - AB2
=> AC2 = 152 - 92
=> AC = 12 (cm)
▲CMN~▲CAB
=> \(\dfrac{MN}{AB}=\dfrac{CM}{CA}\Rightarrow MN=\dfrac{AB.CM}{CA}=\dfrac{9.4}{12}=3\left(cm\right)\)
Vậy MN = 3 cm
c.
▲CMN~▲CAB
=> \(\dfrac{S_{CMN}}{S_{CAB}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{3}{9}\right)^2=\dfrac{9}{81}=\dfrac{1}{9}\)