Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thị
Xem chi tiết
*•.¸♡ρυи๛
Xem chi tiết
White Hole
13 tháng 12 2020 lúc 18:19

undefined

Nguyễn Hoàng Long
Xem chi tiết
Nguyễn Mỹ Hạnh
Xem chi tiết
Linh Nhi
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Nguyễn Mỹ Hạnh
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
nguyễn thi nga
Xem chi tiết
Tô Đức Tâm
Xem chi tiết
shitbo
18 tháng 3 2020 lúc 16:14

\(\text{bạn tự thử từ n=2 đến n=5}\)

\(+,n>5\text{ n có 1 trong các dạng:}5k+1;5k+2;5k+3;5k+4\left(k\text{ là số nguyên dương}\right)\)

\(.n=5k+1\Rightarrow n^4\text{ chia 5 dư 1}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+2\Rightarrow n^4\text{ chia 5 dư 1}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+3\Rightarrow n^4\text{ chia 5 dư 3}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+4\Rightarrow n^4\text{ chia 4 dư }1\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)
Vậy: n=5

bạn có thể chứng minh bài toán phụ sau: với n là số tự nhiên và n không chia hết cho 5 thì n^4 chia 5 dư 1

Khách vãng lai đã xóa
shitbo
18 tháng 3 2020 lúc 16:18

\(n^{2003}+n^{2002}+1=n^{2003}-n^2+n^{2002}-n+n^2+n+1\)

\(=n^2\left(n^{2001}-1\right)+n\left(n^{2001}-1\right)+n^2+n+1\)

chia hết cho n2+n+1 nên là hợp số khi n>1

thử lại n=1 thỏa mãn

Khách vãng lai đã xóa
Nguyễn Mỹ Hạnh
Xem chi tiết
Lèo thị thu lệ
Hôm kia lúc 20:05

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

Yến Phạm
Xem chi tiết
Phạm Quang Long
27 tháng 12 2016 lúc 22:55

Dài thế

Lê Trinh mai lan
27 tháng 12 2016 lúc 23:01

tớ chịu

Nguyễn Linh
27 tháng 12 2016 lúc 23:13

A=1+2+2^2+...+2^2002
A2=2+2^2+2^3+...+2^2003
A2-A=2^2003-1
A=2^2003-1
từ đó ta thấy 
2^2003-1=2^2003-1
suy ra A=B
xl hiện tại mình đang phải off gấp nên không đưa đc lời giải bài 2 nhé