Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
tìm \(n\in N^{\cdot}\)để:
a) \(a^4+4\)là số nguyên tố
b) \(n^{2002}+1\)là số nguyên tố
Tìm số tự nhiên N để:
a)17.n là số nguyên tố hay hợp số
b)11.(n-20) là số nguyên tố(n≥20)
1. Chứng tỏ rằng với n \(\in\)N thìn+1 và 7n+4 là hai số nguyên tố cùng nhau.
2. Tìm n\(\in\)N thì 2n+1 và 4n+1 là hai số nguyên tố cùng nhau.
3. Tìm số nguyên tố p sao cho p+2 và p+4 đều là số nguyên tố.
4. Tìm số tự nhiên n sao cho \(n^2\)+3 là số chính phương.
Tìm n sao cho:
a. n, n+10, n+14 là số nguyên tố.
b. n, n+4, n+14 là số nguyên tố.
c. n, 2n+1n 4n+1 là số nguyên tố.
d. n, \(8n^2+1\) là số nguyên tố.
tìm các số nguyên tố n sao cho:
a) N; n+3;n+5 đều là các số nguyên tố
b) n+2 và n+4 đều là số nguyên tố
Tìm n thuộc N để:A=(n-2).(n^2 +n-5) là số nguyên tố.
Mình cần gấpppppppp
1. Chứng minh rằng: 2001. 2002. 2003. 2004 + 1 là hợp số.
2. Tướng Trần Hưng Đạo đánh tan 50 vạn quân Nguyên năm abcd , biết:
a là số tự nhiên nhỏ nhất khác 0 b là số nguyên tố nhỏ nhất
c là hợp số chẵn lớn nhất có một chữ số
d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất
Vậy abcd là năm nào?
3. Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
4. Tìm ba số tự nhiên liên tiếp có tích bằng 19 656.
5. Tìm số tự nhiên n biết rằng: 1 + 2 + 3 + ... + n = 1275.
BẠN NÀO LÀM ĐÚNG THÌ MÌNH SẼ TICK NHA !!!