Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Vũ Thu
Xem chi tiết
Sasuke The Last
Xem chi tiết
Mark Kim
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2019 lúc 18:46

a/ \(\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)

b/ \(\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)

c/ \(\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}+\frac{\sqrt{\left(2+\sqrt{3}\right)^2}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=2-\sqrt{3}+2+\sqrt{3}=4\)

d/ \(\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\frac{\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{8}=\frac{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}=1\)

e/ \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\frac{\sqrt{2}\left(3-\sqrt{3}+3+\sqrt{3}\right)}{6}=\sqrt{2}\)

f/ \(\frac{9+4\sqrt{5}-8\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)

khanhhuyen6a5
Xem chi tiết
Akai Haruma
6 tháng 5 2020 lúc 23:39

Lời giải:

Đặt \(\sqrt{3+\sqrt{5}}=a; \sqrt{3-\sqrt{5}}=b\) và biểu thức đã cho là $P$

\((a+b)^2=6+2\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=10\Rightarrow a+b=\sqrt{10}\)

\((a-b)^2=6-2\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=2\Rightarrow a-b=\sqrt{2}\)

$ab=\sqrt{(3-\sqrt{5})(3+\sqrt{5})}=2$

\(P=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}=\frac{\sqrt{10}(a^2-b^2)+ab(a-b)}{10+\sqrt{10}(a+b)+ab}=\frac{\sqrt{10}.\sqrt{10}.\sqrt{2}+2\sqrt{2}}{10+\sqrt{10}.\sqrt{10}+2}\)

\(=\frac{6\sqrt{2}}{11}\)

Đinh Thị Thùy Trang
Xem chi tiết
thi thu thuy khuat
Xem chi tiết
♚ QUEEN ♚
Xem chi tiết
Đinh Thị Thùy Trang
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 22:47

\(B=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=2\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=8\)

\(A^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)

\(A^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(A^2=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\) (do \(A>0\))

\(C=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}-\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{3}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}-\frac{\sqrt{3}-\sqrt{2}}{3}\)

\(=\frac{\sqrt{2}}{6}+\frac{\sqrt{2}}{3}=\frac{\sqrt{2}}{2}\)