Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Bình Dương
Xem chi tiết
Mr Lazy
17 tháng 4 2016 lúc 19:59

\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}\)

\(=\sqrt{\left(2m\right)^2-4\left(-2m-5\right)}=\sqrt{4m^2+8m+20}=\sqrt{4\left(m+1\right)^2+16}\)

\(\ge\sqrt{16}=4\)

Đối chiếu \(m+1=0\Leftrightarrow m=-1\) với điều kiện có 2 nghiệm phân biệt của phương trình rồi kết luận.

Nguyễn Thị Thanh Huyền
Xem chi tiết
Trang Trang
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
16 tháng 7 2018 lúc 18:37

1 ) \(\Delta=\left(-2m\right)^2-4.\left(-5\right)=4m^2+20>0\)

\(\Delta>0\) . Nên phương trình luôn có hai nghiệm phân biệt với mọi m

2 ) Theo định lý vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-2m-5\end{matrix}\right.\)

Đặt : \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2\)

\(=x_1^2+x_2^2-2.x_1.x_2\)

\(=\left[\left(x_1+x_2\right)^2-2.x_1.x_2\right]-2.x_1.x_2\)

\(=\left[\left(2m\right)^2-2.\left(-2m-5\right)\right]-2.\left(-2m-5\right)\)

\(=4m^2+4m+10+4m+10\)

\(=4m^2+8m+20\)

\(=4\left(m^2+2m+5\right)\)

\(=4\left[\left(m^2+2m+1\right)+4\right]\)

\(=4\left[\left(m+1\right)^2+4\right]\)

Do : \(\left(m+1\right)^2\ge0\Rightarrow4\left[\left(m+1\right)^2+4\right]\ge16\)

Hay \(A^2\ge16\Leftrightarrow A\ge4\)( Vì \(A\ge0\) )

Vậy GTNN của \(\left|x_1-x_2\right|\) là 4 khi \(\left(m+1\right)^2=0\Leftrightarrow m=-1\)

Chúc bạn học tốt !!

thái hoàng
16 tháng 7 2018 lúc 18:13

den ta =4m^2 +20>0 <luon dung voi moi x thuoc R>

ket luan pt luon co 2 nghiem phan biet voi moi m

b, voi moi m pt co 2 nghiem phan biet

theo viet x1+x2=2m

x1nh2 = -5

[|x1-x2|]^2=x1^2+x2^2-2x1x2

=[x1+x2]^2-4x1x2

=4m^2+20lon hon hoac bang 20

dau bang xay ra khi chi khi m =0

Phan Ưng Tố Như
Xem chi tiết
Tram Nguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 5 2019 lúc 13:17

Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6

= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8

⇒ A = m - 2 2 - 12 ≥ 12

Suy ra  m i n   A = - 12 ⇔ m = 2

m = 2 thỏa mãn (*)

Vậy với  m = 2  thì biểu thức A đạt giá trị nhỏ nhất.

Đáp án cần chọn là: A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2019 lúc 16:07

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

Nguyễn Thị Thanh Huyền
Xem chi tiết
Nguyen Thi Trinh
19 tháng 4 2017 lúc 10:43

Phương trình: \(x^2-3x+2m+2=0\left(1\right)\)

a/ Thay m=0 vào phương trình (1) ta được;

\(x^2-3x+2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy khi m=0 thì phương trình (1) có \(S=\left\{2;1\right\}\)

b/ Xét phương trình (1) có:

\(\Delta=\left(-3\right)^2-4.1.\left(2m+2\right)\)

= \(9-8m-8=1-8m\)

Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow1-8m\ge0\Leftrightarrow m\le\dfrac{1}{8}\)

Vậy để phương trình (1) có nghiệm thì m\(\le\dfrac{1}{8}\)

c/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=2m+2\end{matrix}\right.\)

Theo đề bài ta có:

A=\(x_1^2+x_2^2+x_1^2.x_2^2\)

= \(x_1^2+2x_1x_2+x_2^2-2x_1x_2+x_1^2x_2^2\)

= \(\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1x_2\right)^2\)

= \(3^2-2\left(2m+2\right)+\left(2m+2\right)^2\)

= \(9-4m-4+4m^2+8m+4\)

= \(4m^2+4m+9\)

= \(4m^2+4m+1+8=\left(2m+1\right)^2+8\)

Ta luôn có:

\(\left(2m+1\right)^2\ge0\) với mọi m

\(\Rightarrow\left(2m+1\right)^2+8\ge8\) với mọi m

Dấu "=" xảy ra \(\Leftrightarrow\left(2m+1\right)^2=0\Leftrightarrow2m+1=0\Leftrightarrow m=\dfrac{-1}{2}\) (tmđk)

Vậy GTNN của A=\(x_1^2+x_2^2+x_1^2x_2^2\) là 8 khi m=\(\dfrac{-1}{2}\)

ysssdr
Xem chi tiết
Nguyễn Huy Tú
23 tháng 1 2022 lúc 21:08

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)

\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)

Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4m^2+2m^2-4m+3=6m^2-4m+4\)

bạn kiểm tra lại đề xem có vấn đề gì ko ? 

Nguyễn Việt Lâm
23 tháng 1 2022 lúc 21:10

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=\left(2m\right)^2+2m^2-4m+3\)

\(=6m^2-4m+3\)

Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)

\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)

thư thư
Xem chi tiết
bị trừ điểm rùi
3 tháng 5 2016 lúc 9:04

chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm

Lê Huỳnh
3 tháng 5 2016 lúc 10:38

Lập Delta rồi cho nó >0 giải ra . K = \(x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\) áp dụng vi-et thay vào là ra