Phân tích đa thức thành nhân tử:
x4 -1
phân tích đa thức thành nhân tử
x4-2x3+2x-1
x⁴ - 2x³ + 2x - 1
= (x⁴ - 1) - (2x³ - 2x)
= (x² - 1)(x² + 1) - 2x(x² - 1)
= (x² - 1)(x² + 1 - 2x)
= (x - 1)(x + 1)(x² - 2x + 1)
= (x - 1)(x + 1)(x - 1)²
= (x - 1)³(x + 1)
Phân tích đa thức x 8 + x 4 + 1 thành nhân tử ta được
A. ( x 4 – x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 – x – 1 )
B. ( x 4 – x 2 + 1 ) ( x 2 – x + 1 )
C. ( x 4 - x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
D. ( x 4 + x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
x 8 + x 4 + 1 = x 8 + 2 x 4 + 1 – x 4 = ( x 8 + 2 x 4 + 1 ) – x 4 = [ ( x 4 ) 2 + 2 . x 4 . 1 + 12 ] – x 4 = ( x 4 + 1 ) 2 – ( x 2 ) 2 = ( x 4 + 1 – x 2 ) ( x 4 + 1 + x 2 ) = ( x 4 – x 2 + 1 ) ( x 4 + 2 x 2 – x 2 + 1 ) = ( x 4 – x 2 + 1 ) [ ( ( x 2 ) 2 + 2 . 1 . x 2 + 1 ) – x 2 ] = ( x 4 – x 2 + 1 ) [ ( x 2 + 1 ) 2 – x 2 ] = ( x 4 – x 2 + 1 ) ( x 2 + 1 – x ) ( x 2 + 1 + x ) = ( x 4 – x 2 + 1 ) ( x 2 – x + 1 ) ( x 2 + x + 1 )
Đáp án cần chọn là: C
phân tích đa thức thành nhân tử
x4+4
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
phân tích đa thức thành nhân tử: x4 +x2y2+y4
x⁴ + x²y² +y⁴
= (x²)² + x²y² + (y²)²
= (x²)² + x²y² + (y²)² + x²y² - x²y²
= (x²)² + 2 x²y² + (y²)² - x²y²
= (x² + y²)²- (xy)²
=(x² + y² + xy)(x² + y² - xy)
Phân tích đa thức sau thành nhân tử: x4 + 4
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Phân tích đa thức sau thành nhân tử: x4 – 2x2
x4 – 2x2
(Có x2 là nhân tử chung)
= x2(x2 – 2)
Phân tích đa thức thành nhân tử: x 4 - 5 x 2 + 4
x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1
Phân tích đa thức sau thành nhân tử: x4 +4y2
Sửa đề: x^4+4y^4
=x^4+4x^2y^2+4y^4-4x^2y^2
=(x^2+2y^2)^2-4x^2y^2
=(x^2-2xy+2y^2)(x^2+2xy+2y^2)
Phân tích đa thức thành nhân tử:
x4 + 2023x3 + 2022x + 2023
Phân tích đa thức thành nhân tử (tách 1 hạng tử thành nhiều hạng tử)
a) a4 + a2 + 11
b) a4 + a2 - 22
c) x4 + 4x2 - 5
Lời giải:
a. Không phân tích được thành nhân tử
b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)
(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)
c.
$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$
$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$
Nếu sửa như bạn nói thì làm như sau:
a.
$a^4+a^2+1=(a^2+2a^2+1)-a^2=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)$
b.
$a^4+a^2-2=(a^4-1)+(a^2-1)=(a^2-1)(a^2+1)+(a^2-1)$
$=(a^2-1)(a^2+1+1)=(a-1)(a+1)(a^2+2)$