Cho các số dương x, y thỏa mãn: \(7x^2-13xy-2y^2=0\). Tính \(A=\frac{2x-6y}{7x+4y}\).
Cho các số dương x, y thỏa mãn:\(7x^2-13xy-2y^2=0\)
Tính: \(A=\frac{2x-6y}{7x+4y}\)
Các cậu giúp hộ ạ !!!
ta có \(7x^2-13xy-2y^2=0\)
\(7x^2-14xy+xy-2y^2=0\)
7x(x-2y)+y(x-2y)=0
(7x+y)(x-2y)=0
=>. 7x+y=0 hoặc x-2y=0
=> y=-7x hoặc x=2y
Thay lần lượt vào A là OK nha bn !
cho x,y>0 thỏa mãn \(7x^2-13xy-2y^2=0\)
tính \(A=\frac{2x-6y}{7x+4y}\)
\(7x^2-13xy-2y^2=0\)
\(\Leftrightarrow7x^2-14xy+xy-2y^2=0\)
\(\Leftrightarrow7x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(7x+y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow x=2y\) (do x;y>0)
Do đó: \(A=\frac{2.2y-6y}{7.2y+4y}=\frac{-2y}{18y}=-\frac{1}{9}\)
Tìm các số thực x,y khác 0 thỏa mãn: \(x-2xy+2y^2-2y^2-2x+6y+5=0\)
1. Cho các số dương x,y thỏa mãn :
x2010 + y2010= x2011 + y2011 = x2012+ y2012
Tính x2016 + y2016.
2.Tìm các số x,y thỏa mãn : 2x2 + y2 -2y = 2(xy-1)
3.. Cho phân thức P=\(\frac{x^2+2y^2}{2x+3y+4}\). .Với giá trị nào của x và y thì P=0.
Bài 1. Cho các số a, b thỏa mãn \(a^2+b^2=ab+3\left(a+b\right)\)Tính giá trị \(\left(a-2\right)^{2018}+\left(b-2\right)^{2019}\)
Bài 2.Tìm các số nguyên x, y thỏa mãn \(x^2+2y^2< 2xy+4y-3\)
Tìm các số thực x,y khác 0 thỏa mãn: \(x^2-2xy+y^2-2x+6y+5=0\)
Cho x,y,z là các số dương thỏa mãn x+y+z=xyz
CMR: \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Trả lời
Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1
Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
ĐPCM
Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)
\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)
Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)
\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)
Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)
\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)
( mình đang vội nên làm hơi tắt mong bạn thông cảm )
3.Cho a=b+1.Hãy rút gọn:A=(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32)
4.Cho x,y là các số dương thỏa mãn:x^2-xy-2y^2=0.Tính A=(x^2+2011y^2):(503x^2+4y^2)
chưa hok mới vào câu hỏi tương tự
Cho (x0; y0) là các số nguyên dương thỏa mãn: (x-2).(2y+3)= 26. Khi đó x0+y0=
(x-2)(2y+3)=26
=> 26 chia hết cho 2y+3 hay 2y+3 thuộc U(26)={1;2;3;13;26}
mà 2y+3 là lẻ và 2y là số tự nhiên nên nên 2y+3=13=>y=5
(x-2).13=26
=>x-2=2
=>x=4
=>x+y=4+5=9
lúc đầu ko biết số nguyên dương là gì nên cứ viết đại là 9 ai ngờ đúng luôn
tick nha!!!!!!!!!