Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Uyên
Xem chi tiết
Công Chúa Vui Vẻ
Xem chi tiết
Ác Mộng
29 tháng 6 2015 lúc 12:16

\(\left(x+3y\right)^3-\left(x+3y\right)\left(x^2-3xy+9y^2\right)-2x\left(x-2\right)^2=\left(x+3y\right)^3-\left(x^3+27y^3\right)-2x\left(x-2\right)^2\)

Thay x=1 y=2 ta có:

\(\left(1+3.2\right)^3-\left(1^3+27.2^3\right)-2.1.\left(1-2\right)^2=7^3-\left(1+216\right)-2=343-217-2=124\)

 

Amy Smith
Xem chi tiết
Edogawa Conan
30 tháng 11 2019 lúc 22:44

1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0

Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)

b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)

B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B =  \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{x+3y}{x\left(x-3y\right)}\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
30 tháng 11 2019 lúc 22:45

\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)

\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
30 tháng 11 2019 lúc 22:46

Edogawa Conan Bài này đâu cần tìm ĐKXĐ đâu ? Rút gọn mà?

Khách vãng lai đã xóa
Leon Osman
Xem chi tiết
Toru
11 tháng 12 2023 lúc 20:45

\(A=(x+3y)(x^2-3xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+x^2-5)-5x+1\\A=(x+3y)[x^2-x\cdot3y+(3y)^2]+3y[x^2-(3y)^2]-3x^2y-x^3+5x-5x+1\\A=x^3+(3y)^3+3y(x^2-9y^2)-3x^2y-x^3+1\\A=x^3+27y^3+3x^2y-27y^3-3x^2y-x^3+1\\A=1\)$\Rightarrow$ Giá trị của $A$ không phụ thuộc vào giá trị của biến.

Minh Trang Phạm
Xem chi tiết
Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 22:02

a: \(\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

b: \(\left(x-3y\right)^3=x^3-9x^2y+27xy^2-27y^3\)

Mất Nick Rồi
Xem chi tiết
nguyenthi Kieutrang
Xem chi tiết
Không Tên
10 tháng 8 2018 lúc 12:05

đk:   \(x\ne0\);  \(x\ne\pm3y\)

\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

\(=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

\(=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\frac{x+3y}{x\left(x-3y\right)}\)

a hug YT I want
Xem chi tiết