CM các biểu thức sau ko phụ thuộc vào gtrị của biến:
a) A= (x-2)^3 + (x-2)^3 -2(x^2+12)
b)B= (x-1)^3 - (x+1)^3 + 6(x-1)(x+1)
Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a) y.(x2-y2).(x2+y2)-y.(x4-y4)
b) (\(\dfrac{1}{3}\)+2x).(4x2-\(\dfrac{2}{3}\)x+\(\dfrac{1}{9}\))-(8x3-\(\dfrac{1}{27}\))
c) (x-1)3-(x-1).(x2+x+1)-3.(1-x).x
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
bai1:tính
a)a^4+a^3b+a^2b^2+ab^3+b^4)(a-b)
bài 2:rút gọn biểu thức sau
a)(x+1)^3-(x-1)^3-(x^3-1)-(x-1)(x^2+x+1)
b)(a^2+a-1)(a^2-a+1)
bai3:trong các biểu thức sau biểu thức nào ko phụ thuộc vào x
a)(x-1)^3-(x+1)^3+6(x+1)(x-1)
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
CM biểu thức sau ko phụ thuộc vào biến:
a/ ( x - 2 )2 + 6(x + 1)(x-3) - ( x - 2)(x2 + 2x + 4)
b/ 5x2 - (2x + 1) ( x-2) - x(3x+3) + 7
các bn giúp mk nha
Cm biểu thức sau ko phụ thuộc vào x
-x mũ 3 + 5y mũ 3. Voi x+y=1
Tính giá trị biểu thức sau ko phụ thuộc vào x
A= x mũ 3 + 3x mũ 2 +3x +6
Chứng minh rằng các biểu thức sau không phụ thuộc vào biến:
A= (x-2)^2-(x-3)(x-1)
B= (x-1)^3-(x+1)^3+6(x+1)(x-1)
A = ( x-2 )2 - (x-3)*(x-1)
A= x2 -4x -4 - x2 +x +3x -3
A= 1
Vậy A ko phụ thuộc vào biến x
Chứng tỏ các đa thức sau
Ko phụ thuộc vào biến x, y
a)(x-1)(x^2+y) -(x^2-y) (x-2)-x(x+2y)+3(y-5)
b) 6(x^3y+x-3)-6x(2xy^3+1)-3x^2y(2x-4y^2)
Ko phụ thuộc vào biến y
(x^2+2xy+4y^2)(x-2y)-6(1/2-4/3y^3)
\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)
\(=0+0+0+0-15\)
\(=-15\)
\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)
\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)
\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)
\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)
\(=0+0+0-18\)
\(=-18\)
\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)
\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)
\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)
\(=x^3-8y^3-3+8y^3\)
\(=x^3-3\)
Bài 2. Chứng minh rằng, giá trị của các đa thức sau không phụ thuộc vào giá trị của biến:
a) P = (x + 2)^3 + (x – 2)^3 – 2x(x^2 + 12)
b) Q = (x – 1)^3 – (x + 1)^3 + 6(x + 1)(x – 1)
a, \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy biểu thức ko phụ thuộc biến x
b, \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
Vậy biểu thức ko phụ thuộc biến x
Chứng minh giá trị của các biểu thức sau không phụ thuộc vào giá trị của x:
a) A = 3 ( x – 1 ) 2 – ( x + 1 ) 2 + 2(x – 3)(x + 3) – ( 2 x + 3 ) 2 – (5 – 20x);
b) B = - x ( x + 2 ) 2 + ( 2 x + 1 ) 2 + (x + 3)( x 2 – 3x + 9) – 1.