1. Chứng minh rằng với n∈N thì 7n+3n−1⋮9
chứng minh rằng với n nguyên thì n^6 + n^4 - 3n^3 +7n^2 -3n + 3 ko là số chính phương
chứng minh rằng với n là số nguyên thì n^6+n^4-3n^3+7n^2-3n+3 không là số chính phương
hello l am Duong quang minh, nice to meet you, how old are you, l am nine how do you spell your name ,m-i-n-h
Chứng minh rằng với n N thì hai số sau nguyên tố cùng nhau:
a) 5n + 2 và 2n + 1 b) 7n + 10 và 5n + 7 c) 2n + 1 và 2n + 3 c) 3n + 1 và 5n + 2
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)
d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)
chứng minh rằng với mọi n thuộc N thì n^4+7n^2+3n^2+21 ko thể là số nguyên tố
Chứng minh rằng với mọi số tự nhiên n thì 7^n + 3n -1 luôn chia hết cho 9
1. Chứng minh rằng với n∈N thì 7^n+3n−1⋮9
Sửa đề: n thuộc N*
n = 1 => mệnh đề đúng
Giả sử nó đúng đến n = k: \(7^k+3k-1⋮9\)
Cần chứng minh nó đúng với n = k + 1. \(7^{k+1}+3\left(k+1\right)-1⋮9\)
<=> \(7^k.7+3k+2=7\left(7^k+3k-1\right)-18k+9\)
\(=7\left(7^k+3k-1\right)-9\left(2k-1\right)⋮9\) (đúng)
P/s: Em có tính sai chỗ nào ko :>>
câu 1
a) (4x+4)(3y+1)=20
b) (x-1)(2y+1)=30
câu 2
a) 7n chia (n-3)
b ) (3n+1) chia (n-1)
caau3
cho abc chia 7 chứng minh rằng :( 2a+3b+c) hộ tôi với
Câu 2:
a: Ta có: \(7n⋮n-3\)
\(\Leftrightarrow21⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(21\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
hay \(n\in\left\{4;2;6;0;10;-4;24;-18\right\}\)
b: Ta có: \(3n+1⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Chứng minh rằng các phân số sau tối giản với n tự nhiên:
3n+2/5n+3
Chứng minh rằng các phân số sau có giá trị tự nhiên:
a) 10 mũ 2002 +2 /3
b) 10 mũ 2003 +8 /9
Chứng minh rằng
a) 1717/2929=17171717/29292929
b) 3210-34/4170-41 = 6420-68 / 8340-82
Tìm số tự nhiên n để các phân số sau tối giản
a) 2n+3 / 4n+1
b) 3n+2 /7n+1
Tìm số tự nhiên n để n+3 / 2n-2 ; n+19 / n+6 có giá trị tự nhiên
Chứng minh rằng với mọi n thuộc N thì UCLN(3n + 2,2n + 1) = 1
Gọi UCLN(3n+2;2n+1) = d
Ta có : 3n+2 chia hết cho d suy ra 6 n+4 chia hết cho d
2n+1 chia hết cho d suy ra 6n+3 chia hết cho d
Do đó (6n+4)-(6n +3) chia hết cho d suy ra 6n+4-6n-3 chia hết cho d
Suy ra 1 chia hết cho d suy ra d=1 hay với mọi n thuộc N thì 3n+2 và 2n+1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d \(\inƯC\left(3n+2,2n+1\right);d\in N\)*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
=> ( 6n + 4 ) - ( 6n + 3 ) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Vậy UCLN(3n+2,2n+1) = 1 với mọi n\(\in N\)
Xin lỗi câu cuối phải là
Vậy với mọi n thuộc N thì ƯCLN(3n+2;2n+1) = 1 ( đpcm )