Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Nam Xiumin
Xem chi tiết
Hậu Duệ Mặt Trời
20 tháng 7 2016 lúc 20:52

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

Hải Nam Xiumin
21 tháng 7 2016 lúc 6:58

cảm ơn bạn nha ok

Linh Vũ
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Nguyễn Linh Chi
9 tháng 12 2019 lúc 13:20

Dùng liên hợp.

pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)

\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)

\(=3x-1\)

<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)

\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)

<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)

<=> \(x^2-3x+2=0\) phương trình bậc 2.

Em làm tiếp nhé!

Khách vãng lai đã xóa
Đặng Thanh Quang
Xem chi tiết
Đinh Đức Hùng
10 tháng 5 2018 lúc 21:19

Có : \(2-\sqrt{3}+\frac{1}{2-\sqrt{3}}=2-\sqrt{3}+\frac{2+\sqrt{3}}{4-3}=2-\sqrt{3}+2+\sqrt{3}=4\)

Lập phương x lên ta được :

\(x^3=2-\sqrt{3}+\frac{1}{2-\sqrt{3}}+3\left(\sqrt[3]{2-\sqrt{3}}+\frac{1}{\sqrt[3]{2-\sqrt{3}}}\right)\)

\(\Leftrightarrow x^3=4+3x\Rightarrow x^3-3x-3=1\) Thay vào A ta được :

\(A=\left(x^3-3x-3\right)^{2011}=1^{2011}=1\)

Love
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
nhinhanhnhen
Xem chi tiết
Bùi Quang Minh
Xem chi tiết