Tìm tất cả các số nguyên n so cho A=n^4+n^3+n^2 là số chính phương
Tìm tất cả số nguyên n sao cho A = n^4 + n^3 + n^2 là số chính phương
Có \(A=n^2\left(n^2+n+1\right)\)
Để A là scp \(\Leftrightarrow n^2+n+1\) là scp
Đặt \(a^2=n^2+n+1\) (\(a\in Z\))
\(\Leftrightarrow4a^2=4n^2+4n+4\)
\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)
TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)
TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)
TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)
Vậy n=0 và n=-1 thì A là scp
Tìm tất cả các số nguyên \(n\) sao cho \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(A=n^4+2n^3+2n^2+n+7\)
\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)
\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)
\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)
Ta lại có :
\(\left(n^2+n+1\right)^2-A\)
\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)
\(=n^2+n-6\)
Để \(n^2+n-6>0\)
\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)
Nên A không phải là số chính phương
Xét \(-3\le n\le2\)
Để A là số chính phương
\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)
Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương
\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài
Tìm tất cả các số nguyên n để n^4 + 3n^3 + 3n^2 là số chính phương
Lời giải:
$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$
Để $A$ là scp thì $n^2+3n+3$ là scp.
Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.
$\Rightarrow 4n^2+12n+12=4x^2$
$\Rightarrow (2n+3)^2+3=4x^2$
$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$
Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.
Tìm tất cả các số nguyên n sao cho n4+2n3+2n2+n+7 là số chính phương
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
Tìm tất cả các số nguyên n sao cho : n4+ 2n3 + 2n2+ n +7 là số chính phương.
Tìm tất cả các số nguyên n sao cho: \(n^4+2n^3+2n^2+n+7\) là số chính phương.
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt
Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\) là số chính phương
Đặt \(n^4+n^3+1=a^2\)
\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)
\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)
\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow16n^2\le64\)
\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.
Vậy ....
666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010
1)Có bao nhiêu ước là số chính phương của số
\(A=1^9.2^8.3^7.4^6.5^5.6^4.7^3.8^29^1\)
2)Tìm tất cả các số tự nhiên n sao cho các số n+50 va n-50 là số chính phương.
3)Tìm tất cả các số nguyên tố p sao cho 17p+1 là số chính phương.
4)a)Chứng minh rằng một số nguyên biểu diễn dưới dạng hai số chính phương khi và chỉ khi nó là một số lẻ hoặc chia hết cho 4.
b)Có bao nhiêu số tự nhiên từ 1 đến 2016 là hiệu của 2 số chính phương
Tìm tất cả các số nguyên n để A = n^2+ n+1 là số chính phương?