Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tae Thị nở sml
Xem chi tiết
Tiffany Ho
Xem chi tiết
Nguyễn Việt Hoàng
9 tháng 2 2019 lúc 12:40

A B C H M N 1 2 I K

a) Xét \(\Delta AHB\)\(\Delta AHC\)có :

\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)

Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)

b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :

\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )

\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )

Tiffany Ho
9 tháng 2 2019 lúc 22:16

câu c đâu r bn (mk đang cần câu c ak)

Lenna ^-^
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 11:23

e: I là trực tâm của ΔBAD

=>DI vuông góc AB

=>DI//AC

=>góc BDI=góc ACB

DT là phân giác của góc IDB

=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB

DI//AC

=>góc IDA=góc DAC

AD là phân giác của góc HAC

=>góc DAC=1/2*góc HAC

=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ

=>góc IDT+góc IDA=1/2*90=45 độ

=>góc TDA=45 độ

=>ΔTDA vuông cân

Ánh Khuê
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 22:09

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có

góc HAB=góc KHA

=>ΔAHB đồng dạng với ΔHKA

b: ΔAHB đồng dạng với ΔHKA

=>AH/HK=AB/HA

=>AH^2=HK*AB

c: Xét ΔCAM có KI//AM

nên KI/AM=CI/CM

Xét ΔCMB có IH//MB

nên IH/MB=CI/CM

=>KI/AM=IH/MB

mà AM=MB

nên KI=IH

=>I là trung điểm của KH

Võ Yến
Xem chi tiết

Câu a bạn có chép sai ko vậy?

Giải

b)Xét tam giác BAH và CAH có:

AB=AC(gt)

góc B =góc C(gt)

AH chung

\(\Rightarrow\)tam giác BAH =CAH (c.g.c)

\(\Rightarrow\)góc BAH=CAH (2 góc t/ư)

Mặt khác AH nằm giữa AB và AC ,chia góc A thành 2 góc bằng nhau 

Mà H là trung điểm BC

\(\Rightarrow\)AH là tia phân giác góc A và vuông góc BC

 

Nguyễn Lê Phước Thịnh
8 tháng 3 2021 lúc 19:14

a) Sửa đề: ΔAHB=ΔAHC

Xét ΔAHB và ΔAHC có 

AH chung

AB=AC(ΔABC cân tại A)

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-g-c)

Đỗ Thanh Huyền
Xem chi tiết
ko tên
Xem chi tiết
ko tên
28 tháng 8 2021 lúc 17:15

giải giúp mik với ạ. ai làm được mik tick luôn

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 22:03

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có 
AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó: ΔAHD=ΔAED

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)

nên ΔBAD cân tại B

c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có 

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)

Do đó: ΔHDK=ΔEDC

Lê Ngọc Huyền
29 tháng 8 2021 lúc 21:40

bạn học thcs thị trấn văn điển lớp 8a1 cô hằng nhỉ

An Nguyen
Xem chi tiết
Tue Anh Do
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
9 tháng 12 2023 lúc 15:44

`#3107.101107`

`a,`

Xét $\triangle ABH$ và $\triangle ACH$:

`AB = AC` $(\triangle ABC$cân tại A`)`

\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`

`HB = HC ( H` là trung điểm của BC`)`

$=> \triangle ABH = \triangle ACH (c - g - c)$

Vì $\triangle ABH = \triangle ACH$

`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí kề bù

`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)

`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`

`b,`

Vì $\triangle ABH = \triangle ACH (a)$

`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)

Xét $\triangle AHM$ và $\triangle AHN$:

AH chung

\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)

\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)

$=> \triangle AHM = \triangle AHN (ch - gn)$

`c,`

Xét $\triangle HMB$ và $\triangle HNC$:

\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)

`HB = HC` `(`gt`)`

\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`

$=> \triangle HMB = \triangle HNC (ch - gn)$

`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`

Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)

Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`

Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)

Xét $\triangle KHB$ và $\triangle IHC$:

\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)

`HB = HC`

\(\widehat{KHB}=\widehat{IHC}\)

$=> \triangle KHB = \triangle IHC (g - c - g)$

`=> BK = CI` `(2` cạnh tương ứng`)`

Ta có:

`AK = AB + BK`

`AI = AC + CI`

Mà `AB = AC; BK = CI`

$=> AK = AI => \triangle AIK$ cân tại A.

loading...