Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ko tên

Bài 5.Cho tam giác  ABC vuông tại A, (AB < AC), đường cao AH. AD là tia phân giác của tam giác AHC, kẻ DE vuông góc AC tại E.

CMR: a)tam giác  AHD = tam giác AED

b) tam giác  BAD cân;

c) Gọi K là giao điểm của DE và AH. Chứng minh: tam giác  HDK = tam giác EDC;

d) AD vuông góc  CK

e) HE // KC;

ko tên
28 tháng 8 2021 lúc 17:15

giải giúp mik với ạ. ai làm được mik tick luôn

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 22:03

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có 
AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó: ΔAHD=ΔAED

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)

nên ΔBAD cân tại B

c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có 

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)

Do đó: ΔHDK=ΔEDC

Lê Ngọc Huyền
29 tháng 8 2021 lúc 21:40

bạn học thcs thị trấn văn điển lớp 8a1 cô hằng nhỉ

Lê Ngọc Huyền
29 tháng 8 2021 lúc 21:41

mk ko lầm đâu ha ? mong bạn rep cho mk biết tên ạ                 MK RẤT RẤT MONG BẠN TL


Các câu hỏi tương tự
Lê Ngọc Huyền
Xem chi tiết
hà nhi
Xem chi tiết
Đặng Thị Thu Hà
Xem chi tiết
Vương Gia Lương
Xem chi tiết
hoang minh nguyen
Xem chi tiết
Quốc Tuấn Phạm
Xem chi tiết
Dương Dương
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Juned Gaming
Xem chi tiết