tìm x,y
\(2x+y-2\)\(\sqrt{xy}-6\sqrt{x}+9\)=0
giúp mik nha mik đang cần gấp
A=\(\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}.\)
a) Rút gọn A
Giúp mik với mình đang cần gấp !! Thanks nhìu!!
A=\(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right).\)
a) Rút gọn biểu thức A
b) giá trị của A khi x=3,y=4+2\(\sqrt{3}\)
Giúp mik với ~ mik đag cần gấp! tks nhìu nha!!
Mọi người ơi ! Giúp mik bài này với ! Mik đang cần gấp lắm đó . Ai nhanh mik tick nha !
B1 : Tìm x, y thuộc N :
a , xy = 21
b, ( x + 5 ) ( y - 3 ) = 15
c, ( 2x - 1 ) ( y - 3 ) = 12
B2 . Tìm tổng các ước của 6 ( không phải là số âm ) , tổng các ước của 8 . Nêu nhận xét về 2 tổng này
Mik đang cần gấp
Giúp mik nha
Bài 1
a, Có thể lập xy=21 <=> x=3;y=7 hoặc x=-3;y=-7
<=> x=7;y=3 hoặc x=-7;y=-3 ....v..v...
b, \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\orbr{\begin{cases}x+5=15\\y-3=15\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=18\end{cases}}}\)
c, \(\left(2x-1\right)\left(y-3\right)=12\)
\(\Rightarrow\orbr{\begin{cases}2x-1=12\\y-3=12\end{cases}\Rightarrow\orbr{\begin{cases}2x=13\\y=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{13}{2}\\y=15\end{cases}}}\)
Bài 2
Ư(6)={1;2;3;6} => 1+2+3+6=12
Ư(8)={1;2;4;8} => 1+2+4+8 =15
=> Tổng 2 ước này đều \(⋮3\)
๖²⁴ʱミ★Šїℓεŋէ❄Bʉℓℓ★彡⁀ᶦᵈᵒᶫ mù mắt =)) t làm mẫu câu b thôi, c nhìn vào mà làm
b) \(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow y-3=\frac{15}{x+5}\Rightarrow y=3+\frac{15}{x+5}\)
\(\Rightarrow x+5\inƯ\left(15\right)\)
Ta có: \(Ư\left(15\right)=\left\{-15;-5;-3;-1;0;1;3;5;15\right\}\)
\(x=\left\{0;-10;-8;-6;-20;-4;-2;0;10\right\}\)
Vì \(x\inℕ\Rightarrow x=\left\{0;10\right\}\)
\(\Rightarrow y=\left\{6;4\right\}\)
Vậy: (x,y) = {(0;10); (6;4)}
a,x=3,y=7
b,x=0,y=6
Tìm x,y,biết:
a)(x – 3).(x + 5) > 0.
b) xy – 2x - 3y + 6 = 0.
c) xy – x - 2y + 2 = 0.
Mik đang cần gấp. Mấy bạn làm nhanh nha>
VFTGBGYGVFRTGFDRGV
B=\(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x-y}{\sqrt{xy}}\right)\)
a)Rút gọn biểu thức
b) tính giá trị của B khi x=3, y= \(4+2\sqrt{3}\)
Giups mik với !!1 Mình đang cần gấp !! thanks nhìu nha!!
Cho x+y=1,xy khác 0. CMR: x/(y3-1)-y/(x3-1)+2(x+y)/(x2+y2)=0.Giải giúp mik nha, mik đang cần gấp.
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Tìm max A=\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Giúp mik vs mình đang cần gấp!!!!!
thk
Ta có:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\Rightarrow x+y+z=xyz\)
Dễ có một vài phép biến đổi cơ bản và bất đẳng thức AM - GM:\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+x^2yz}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\sqrt{\frac{x}{x+z}\cdot\frac{x}{x+y}}\le\frac{\frac{x}{x+z}+\frac{x}{x+y}}{2}\)
Khi đó:\(LHS\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{z+y}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)
a) Rút gọn P= \(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\) với x>0; x ≠ 1
b) Tìm giá trị lớn nhất của P với 0<x≤3
giúp mik với ạ, mik đang cần gấp :((((((((
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
tìm nghiệm nguyên của pt : x^2 -y^2+2x-4y-10=0, giúp mik vs ạ , mik đang cần gấp
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)