Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh phạm phương khanh
Xem chi tiết
Thắng Nguyễn
18 tháng 7 2016 lúc 22:29

chắc đề thế này @@ (a+3)(9a-8) - (2+a)(9a-1) 

=9a2-8a+27a-24-9a2-17a+2

=(9a2-9a2)+(-8a+27a-17a)-24+2

=2a-22.Thay a=-3,5 vào được:2*(-3,5)-22

=-7-22=-29.Đpcm

mai van anh
Xem chi tiết
Cheng Xiao
27 tháng 6 2018 lúc 7:55

Ta chỉ cần  thay a= -3.5 vào biểu thức và nếu nó bằng - 29 thì ta sẽ có đpcm

Takahashi Himeko
Xem chi tiết
Níu Đắng Cay
20 tháng 6 2017 lúc 21:12

pạn chỉ cần thế a=-3.5 vào biểu thức A là ra kết quả ngay 

Asuna
10 tháng 7 2017 lúc 17:37

A=(a+3)(9a-8)-(2+a)(9a-1)=-29

Thay a=3,5 vào biểu thức trên

Ta có = (-3,5+3)(9X-3,5-8)-(2+-3,5)(9X-3,5-1)

         = -1/2 X(-79/2)       -     3/2 (-65/2)

         = 79/4 - 195/4     

         =-29

Xem chi tiết

a: \(A=\left(a+3\right)\left(9a-8\right)-\left(a+2\right)\left(9a-1\right)\)

\(=9a^2-8a+27a-24-\left(9a^2-a+18a-2\right)\)

\(=9a^2+19a-24-9a^2-17a+2=2a-22\)

Thay a=-3 vào A, ta được:

\(A=2\cdot\left(-3\right)-22=-6-22=-28\)

b: \(Q=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21\)

=-55-21

=-76

=>Q không phụ thuộc vào biến x

Chắc chắn rồi! Mình sẽ giúp bạn giải từng phần của bài toán này.

Bài 1:a) Chứng minh rằng với \(a = - 3\), giá trị của biểu thức \(A = \left(\right. a + 3 \left.\right) \left(\right. 9 a - 8 \left.\right) - \left(\right. 2 + a \left.\right) \left(\right. 9 a - 1 \left.\right)\) bằng -28.Biểu thức cần chứng minh:
\(A = \left(\right. a + 3 \left.\right) \left(\right. 9 a - 8 \left.\right) - \left(\right. 2 + a \left.\right) \left(\right. 9 a - 1 \left.\right)\)
Thay giá trị \(a = - 3\) vào biểu thức:
\(A = \left(\right. - 3 + 3 \left.\right) \left(\right. 9 \left(\right. - 3 \left.\right) - 8 \left.\right) - \left(\right. 2 + \left(\right. - 3 \left.\right) \left.\right) \left(\right. 9 \left(\right. - 3 \left.\right) - 1 \left.\right)\)Tính các phần trong biểu thức:
\(A = 0 \times \left(\right. 9 \left(\right. - 3 \left.\right) - 8 \left.\right) - \left(\right. 2 - 3 \left.\right) \left(\right. 9 \left(\right. - 3 \left.\right) - 1 \left.\right)\)
Cập nhật lại biểu thức:
\(A = 0 \times \left(\right. - 35 \left.\right) - \left(\right. - 1 \left.\right) \left(\right. - 28 \left.\right)\)Phần 1: \(\left(\right. - 3 + 3 \left.\right) = 0\)Phần 2: \(9 \left(\right. - 3 \left.\right) - 8 = - 27 - 8 = - 35\)Phần 3: \(\left(\right. 2 - 3 \left.\right) = - 1\)Phần 4: \(9 \left(\right. - 3 \left.\right) - 1 = - 27 - 1 = - 28\)Tiếp tục tính toán:
\(A = 0 - \left(\right. - 1 \left.\right) \left(\right. - 28 \left.\right) = 0 - 28 = - 28\)

Vậy, \(A = - 28\), chứng minh được yêu cầu.

b) Chứng minh rằng biểu thức \(Q = \left(\right. 3 x - 5 \left.\right) \left(\right. 2 x + 11 \left.\right) - \left(\right. 2 x + 3 \left.\right) \left(\right. 3 x + 7 \left.\right)\) không phụ thuộc vào \(x\).

Để chứng minh biểu thức không phụ thuộc vào \(x\), chúng ta cần rút gọn biểu thức và kiểm tra xem có phần nào chứa \(x\)hay không.

Mở rộng các phần trong biểu thức:
\(\left(\right. 3 x - 5 \left.\right) \left(\right. 2 x + 11 \left.\right) = 3 x \left(\right. 2 x + 11 \left.\right) - 5 \left(\right. 2 x + 11 \left.\right)\)\(= 6 x^{2} + 33 x - 10 x - 55\)\(= 6 x^{2} + 23 x - 55\)
Tiếp theo, mở rộng phần thứ hai:
\(\left(\right. 2 x + 3 \left.\right) \left(\right. 3 x + 7 \left.\right) = 2 x \left(\right. 3 x + 7 \left.\right) + 3 \left(\right. 3 x + 7 \left.\right)\)\(= 6 x^{2} + 14 x + 9 x + 21\)\(= 6 x^{2} + 23 x + 21\)Lấy hiệu của hai biểu thức vừa rút gọn:
\(Q = \left(\right. 6 x^{2} + 23 x - 55 \left.\right) - \left(\right. 6 x^{2} + 23 x + 21 \left.\right)\)\(Q = 6 x^{2} + 23 x - 55 - 6 x^{2} - 23 x - 21\)Rút gọn các hạng tử:
\(Q = \left(\right. 6 x^{2} - 6 x^{2} \left.\right) + \left(\right. 23 x - 23 x \left.\right) - 55 - 21\)\(Q = 0 x^{2} + 0 x - 76\)\(Q = - 76\)

Vậy, biểu thức \(Q\) không có phần nào chứa \(x\) và bằng -76, do đó không phụ thuộc vào \(x\).

Kết luận:Phần (a): Đã chứng minh được \(A = - 28\) khi \(a = - 3\).Phần (b): Đã chứng minh được \(Q = - 76\), biểu thức không phụ thuộc vào \(x\).

Tham khảo

cherry girl
Xem chi tiết
vân nguyễn
Xem chi tiết
Akai Haruma
25 tháng 7 2021 lúc 10:19

Lời giải:

a.

\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)

\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)

\(=-a^4b^4(3a+4b)^2\)

b.

$x^3-6x^2y+12xy^2-8x^3$

$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$

c.

$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$

$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$

$=(x+\frac{1}{2})^3$

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 23:27

a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\cdot\left(4b+3a\right)^2\)

b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)

\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(x-2y\right)^3\)

c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=\left(x+\dfrac{1}{2}\right)^3\)

gffggjhjkj
Xem chi tiết
Unirverse Sky
23 tháng 11 2021 lúc 9:09

3 nha !!!!!!!!!!!!!!!!!!

Khách vãng lai đã xóa
Lê Song Phương
23 tháng 11 2021 lúc 9:34

\(5\sqrt{a}-3\sqrt{25a}+2\sqrt{9a}\)\(=5\sqrt{a}-3.5\sqrt{a}+2.3\sqrt{a}\)\(=5\sqrt{a}-15\sqrt{a}+6\sqrt{a}\)\(=\left(5-15+6\right)\sqrt{a}=-4\sqrt{a}\)

Khách vãng lai đã xóa
lakabasi
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 21:29

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
lê trang linh
Xem chi tiết
công chúa tóc mây
16 tháng 5 2017 lúc 13:52

khó úa z mik ko giai duoc k cho mik ik mik kb cho

Nghiem Thi Mai Phuong
17 tháng 7 2017 lúc 21:33

câu b có phải 2011 hông zậy mà sao lạ dữ

nguyen ba tuanduc
17 tháng 7 2017 lúc 22:14

a.9a2+4b2=13ab nên 9a2-13ab+4b2=0

->(a-b)(9a-4b)=0

->a=b hoặc 9a=4b

mà nếu 9a=4b thì a=\(\frac{4}{9}\)b->3a=\(\frac{12}{9}\)b=1,33b nên <2b , trái với đề bài

==>a=b

thay vào A ta được A=\(\frac{1}{5}\)

2.\(\frac{x+2}{2015}\)+\(\frac{x}{2013}\)+\(\frac{x-2}{2011}\)=3

->\(\frac{x+2}{2015}\)-1+\(\frac{x}{2013}\)-1\(\frac{x-2}{2011}\)-1=0

->\(\frac{x-2013}{2015}\)+\(\frac{x-2013}{2013}\)+\(\frac{x-2013}{2011}\)=0

->x=2013