Cho các số nguyên a,b,c,d. Chứng minh rằng tổng của Ia-bI+Ib-cI+Ic-dI+Id-aI LUÔN LÀ SỐ CHẴN
1, Cho các số nguyên a,b,c. Chứng minh rằng I 2a-5bI + I 3b - 7c I +I c- 6a I LUÔN LÀ SỐ CHẴN
2, Chứng minh rằng nếu các số a,b,c,d,e thoả mãn điều kiện I a-b I = Ib-c I = Ic-d I = I d-e I = I e-a I thì a=b=c=d=e. HÃY TỔNG QUÁT BÀI TOÁN
Cho đường tròn (O;R). Một đường thẳng d cắt đường tròn (O) tại hai điểm C và D. Từ một điểm I thẳng d ở ngoài đường tròn (O) sao chi ID>IC, kẻ hai tiếp tuyến IA và IB tới đường tròn (O). Gọi H là trung điểm của CD.
a, Chứng minh 5 điểm A, H, O, B, I cùng thuộc 1 đường tròn
b, Giả sử AI=AO, khi đó tứ giác AOBI là hình gì
c, Chứng minh rằng khi điểm I di chuyển trên đường thẳng d thỏa mãn: ở ngoài (O) và ID>IC thì AB luôn đi qua một điểm cố định
4)cho tam giác ABC ( AB <AC ). Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Các đường trung trực của các đoạn thẳng BC và AD cắt nhau tại I. chứng minh rằng:
a) IA=ID;IB=IC
b) tam giác IAB= tam giác IDC
c)AI là tia phân giác cảu góc BAC
5)cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có tỉ lệ thức sau : \(\left(\dfrac{a+b}{c+d^{ }}\right)^2\)= \(\dfrac{a^2+b^2}{c^2+d^2}\)
5. ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) \(a.b=c.d\)
\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)
Mà a+b = c+ d; ab = cd
=> đfcm
Bài 4:
a: Ta có: I nằm trên đường trung trực của AD
nên IA=ID
Ta có: I nằm trên đường trung trực của BC
nên IB=IC
b: Xét ΔIAB và ΔIDC có
IA=ID
\(\widehat{AIB}=\widehat{DIC}\)
IB=IC
Do đó: ΔIAB=ΔIDC
Câu 5:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$
Khi đó:
$(\frac{a+b}{c+d})^2=(\frac{bk+b}{dk+d})^2=[\frac{b(k+1)}{d(k+1)}]^2=\frac{b^2}{d^2}(1)$
$\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}(2)$
Từ $(1); (2)\Rightarrow (\frac{a+b}{c+d})^2=\frac{a^2+b^2}{c^2+d^2}$ (đpcm)
Cho tứ giác ABCD nội tiếp đường tròn (O;R). Gọi I là giao của AC và BD. (I khác O). Các điểm A', B', C' D' lần lượt trên đoạn thẳng IA,IB,IC,ID dao cho IA'/IA=IB'/IB=IC'/IC=ID'/ID. CMR A', B', C', D' cùng thuộc một đường tròn. Tính bán kính của đường tròn đó theo R
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
Cho đường tròn (O;R). Một đường thẳng d cắt đường tròn (O) tại hai điểm C và D. Từ một điểm I thẳng d ở ngoài đường tròn (O) sao chi ID>IC, kẻ hai tiếp tuyến IA và IB tới đường tròn (O). Gọi H là trung điểm của CD.
a, Chứng minh 5 điểm A, H, O, B, I cùng thuộc 1 đường tròn .
b, Giả sử AI=AO, khi đó tứ giác AOBI là hình gì ? Tính diện tích hình tròn ngoại tiếp tứ giác AOBI .
c, Chứng minh rằng khi điểm I di chuyển trên đường thẳng d thỏa mãn: ở ngoài (O) và ID>IC thì AB luôn đi qua một điểm cố định
a, b, c \(\in\)R. CM: IaI + IbI + IcI + Ia + b + cI \(\ge\)Ia + bI + Ib + cI + Ic + aI
Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a/ Chứng minh tứ giác BHCD là hình bình hành.
b/ Chứng minh các tam giác ABD, ACD vuông tại B, C.
c/ Gọi I là trung điểm của AD. Chứng minh rằng: IA = IB = IC = ID.
Cho tam giác ABC có góc A > 90 độ.Trên cạnh BC lấy các điểm D và E sao cho BD=BA, CE=CA.Gọi I là giao điểm các tia phân giác trong của tam giác ABC
a)Chứng minh BI,CI là đường trung trực của AB,AC
b)Chứng minh rằng IA=ID=IE
Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a/ Chứng minh tứ giác BHCD là hình bình hành.
b/ Chứng minh các tam giác ABD, ACD vuông tại B, C.
c/ Gọi I là trung điểm của AD. Chứng minh rằng: IA = IB = IC = ID.
Giai giup minh