Từ điểm M nằm ngoài (O: R), vẽ hai tiếp tuyến MA, MB ( A, B là các tiếp điểm). Gọi H là hình chiếu của A trên đường kính BC. Chứng minh MC cắt AH tại trung điểm I của AH
Cho M nằm ngoài đường tròn tâm o bán kính R. Vẽ hai tiếp tuyến MA,MB. Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC
Chứng minh MC cắt AH tại trung điểm của AH
GIẢI GIÚP HA MIK NHA MỌI NGƯỜI
2) CHO ĐƯỜNG TRÒN (O) VÀ ĐIỂM M NẰM NGOÀI ĐƯỜNG TRÒN. VẼ 2 TIẾP TUYẾN MA,MB VỚI(O),(A,B LÀ TIẾP ĐIỂM).VẼ ĐƯỜNG KÍNH BC CỦA (O) VÀ GỌI H LÀ HÌNH CHIẾU CỦA A TRÊN ĐƯỜNG KÍNH BC CỦA(O).CHỨNG MINH MC ĐI QUA TRUG ĐIỂM I CỦA AH.
3) CHO NỬA ĐƯỜNG TRÒN (O) ĐƯỜNG KÍNH AB=2R VÀ LẤY ĐIỂM H TRÊN CẠNH OB QU H VẼ DÂY CD VUÔNG GÓC VỚI AB. TIẾP TUYẾN C CẮT CÁC TIẾP TUYẾN TẠI A,B CỦA(O) TẠI M,N; BM CẮT` CD TẠI I. CHỨNG MINH A,N,I THẲNG HÀNG.
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh . góc AHB = góc AHC
b) Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. Chứng minh . ∆MKH vuông tại K.
từ điểm m nằm bên ngoài đường tròn (o,r) vẽ 2 tiếp tuyến ma mb ( A và b là các tiếp điểm gọi h là giao điểm của mo và ab kẻ đường kính bc của ( O) GỌi i là trung điểm ac chứng minh oiah là hình chữ nhật
Từ một điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Vẽ AH ⊥ MB, BK ⊥ MA (H∈MB,K∈MA). Gọi C là giao điểm của AH và BK. Chứng minh rằng:
a) Tứ giác AOBC là hình thoi
a) Ta có:
Xét tứ giác AOBC có:
AO // BC
AC // BO
⇒ Tứ giác AOBC là hình bình hành
Mà OA = OC = R
⇒ Tứ giác AOBC là hình thoi
từ điểm P nằm ngoài đường tròn (O;R), kẻ 2 tiếp tuyến PA và PB với A,B là tiếp điểm. H là hình chiếu của A lên đường kính BC.
a,Chứng minh: PC cắt AH tại trung điểm E của AH
Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>I là trung điểm của AB
Xét ΔMAK và ΔMCA có
góc MAK=góc MCA
góc AMK chung
=>ΔMAK đồng dạng với ΔMCA
=>MA/MC=MK/MA
=>MA^2=MC*MK=MI*MO
=>MC/MO=MI/MK
=>MC/MI=MO/MK
=>ΔMCO đồng dạng với ΔMIK
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH
Từ điểm M nằm ngoài đường tròn (O,R), vẽ tiếp tuyến MA, (A là tiếp điểm) Gọi E trung điểm AM, kẻ EI vuông góc Om tại I, AH vuông góc OM tại H.Qua M vẽ cát tuyến MBC có MB < MC và tia MC nằm giữa tia MA và MO.Vẽ tiếp tuyến IK tới (O) với K là tiếp điểm.
Chứng minh:
a. Tam giác MHK vuông tại K
b. Giả sử: BC = 3BM, D là trung điểm MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp tam giác ODH