Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Hồng Phúc
Xem chi tiết
Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết
LIVERPOOL
27 tháng 7 2017 lúc 8:59

1,2 kiểu gì ẹ

3,

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)

=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2

4.

Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)

<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)

Áp dụng BDT COSI thì

\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)

Do đó có dpcm

Làm tương tự rồi cộng lại ta đc bdt ban đầu

Dấu bằng xảy ra khi a=b=c

Phạm Văn Hà
28 tháng 7 2017 lúc 20:40

con 2 chưa cho dương nhờ

Nguyễn Duy Long
30 tháng 7 2017 lúc 21:01

giúp đê mọi người....

Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Tiến Hoàng Minh
Xem chi tiết
Minh Hiếu
9 tháng 2 2022 lúc 20:55

\(A=\dfrac{2x+1}{x^2+2}\)

\(\Leftrightarrow Ax^{2\:}+2A=2x+1\)

+) \(A=0\Rightarrow x=-\dfrac{1}{2}\)

+) \(A\ne0\)

\(Ax^2+2A=2x+1\)

\(\Leftrightarrow Ax^{2\:}-2x=1-2A\)

\(\Leftrightarrow x^2-2.\dfrac{x}{A}=\dfrac{1-2A}{A}\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{A}+\dfrac{1}{A^2}=\dfrac{1-2A}{A}+\dfrac{1}{A^2}\)

\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{A-2A^2+1}{A^2}\)

\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{\left(1-A\right)\left(2A+1\right)}{A^2}\)

Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{A}\right)^2\ge0\left(\forall x,A\ne0\right)\\A^2\ge0\end{matrix}\right.\)

⇒ \(\left(1-A\right)\left(2A+1\right)\ge0\)

⇒ \(-\dfrac{1}{2}\le A\le1\)

Còn lại tụ làm nha

☆Châuuu~~~(๑╹ω╹๑ )☆
9 tháng 2 2022 lúc 21:03

\(A=\dfrac{2x+1}{x^2+2}=\dfrac{x^2+2-x^2-2+2x+1}{x^2+2}\\ =1-\dfrac{-\left(x-1\right)^2}{x^2+2}\\ Do\left(x-1\right)^2\ge0\Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}\ge0\\ \Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}+1\le1\) 

\(Dấu"="\Leftrightarrow A=1\\ \Leftrightarrow x-1=0\Rightarrow x=1\\ Vậy.P_{max}=1.khi.x=1\\ A=\dfrac{2x+1}{x^2+2}\rightarrow2A+1=\dfrac{2.\left(2x+1\right)}{x^2+2}+1\\ =\dfrac{4x+2+x^2+2}{x^2+2}=\dfrac{x^2+4x+2}{x^2+2}=\dfrac{\left(x+2\right)^2}{x^2+2}\\ Do\left(x+2\right)^2\ge0\Leftrightarrow\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\) 

\(Dấu"="\Leftrightarrow A=\dfrac{1}{2}khi.x=-2\\ \Rightarrow2A+1\ge0\Rightarrow2A\ge-1\Rightarrow A>-\dfrac{1}{2}\\ Vậy.MinA=-\dfrac{1}{2}.khi.x=-2\)

⚚ßé Só¡⁀ᶦᵈᵒᶫ
9 tháng 2 2022 lúc 20:55

undefined

Lê Hữu Nhân
Xem chi tiết
Nguyễn Huy Tú
20 tháng 8 2021 lúc 20:54

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

Khách vãng lai đã xóa
kagamine rin len
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Cặp mắt xanh
19 tháng 7 2019 lúc 17:13

Có \(2x-2\sqrt{3x+1}-1\)

    \(=\left(2x+\frac{2}{3}\right)-2\sqrt{\left(2x+\frac{2}{3}\right).\frac{3}{2}}+\frac{3}{2}-\frac{19}{6}\)

     \(=\left(\sqrt{2x+\frac{2}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{19}{6}\ge-\frac{19}{6}\forall x\ge-\frac{1}{3}\)

Dấu " =" xảy ra\(\Leftrightarrow\hept{\begin{cases}\sqrt{2x+\frac{2}{3}}=\sqrt{\frac{3}{2}}\\x\ge-\frac{1}{3}\end{cases}}\Leftrightarrow x=\frac{5}{12}\)

    Vậy....

bùivân trang
Xem chi tiết
Lightning Farron
13 tháng 12 2016 lúc 11:32

Bài 1:

Ta thấy:\(2x^2\ge0\Rightarrow-2x^2\le0\)

\(\Rightarrow-2x^2-1\le-1\Rightarrow C\le-1\)

Dấu "=" khi \(-2x^2=0\Leftrightarrow x=0\)

Vậy \(Max_C=-1\) khi x=0

Ta thấy: \(3\sqrt{x-5}\ge0\)

\(\Rightarrow-3\sqrt{x-5}\le0\)

\(\Rightarrow-3\sqrt{x-5}+2\le2\)

\(\Rightarrow D\le2\)

Dấu "=" khi \(-3\sqrt{x-5}=0\Leftrightarrow\sqrt{x-5}=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy \(Max_D=2\) khi \(x=5\)

Bài 2:

Ta thấy: \(3x^2\ge0\Rightarrow3x^2-5\ge-5\)

\(\Rightarrow A\ge-5\)

Dấu "=" khi \(3x^2=0\Leftrightarrow x=0\)

Vậy \(Min_A=-5\) khi x=0

Ta thấy: \(2\left(x-3\right)^2\ge0\)

\(\Rightarrow B\ge0\)

Dấu "=" khi \(2\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(Min_B=0\) khi x=3