Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Miên
Xem chi tiết
uchiha itachi
Xem chi tiết
Thịnh Phan
Xem chi tiết
mam cay xanh
Xem chi tiết
Nguyễn Linh Chi
28 tháng 2 2020 lúc 15:27

Hướng dẫn:

a) Đặt : \(x^2-2x+1=t\)Ta có: 

\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)

b) Đặt : \(x^2+2x+1=t\)

Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)

c)ĐK: x khác 0

Đặt: \(x+\frac{1}{x}=t\)

KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)

Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)

Khách vãng lai đã xóa
Kiệt Nguyễn
28 tháng 2 2020 lúc 15:54

a) Đặt \(x^2-2x+3=v\)

Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)

\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)

\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)

\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)

\(\Rightarrow3v^2-7v+2=0\)

Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)

+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

+)\(x^2-2x+3=\frac{1}{3}\)

\(\Rightarrow x^2-2x+\frac{8}{3}=0\)

Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)

Vậy phương trình có 1 nghiệm là x = 1

Khách vãng lai đã xóa
Trí Tiên
28 tháng 2 2020 lúc 15:56

c) Đặt \(\left(x+\frac{1}{x}\right)=a\) Khi đó pt có dạng :

\(a^2-\frac{9}{2}a+7-2=0\)

\(\Leftrightarrow2a^2-9a+10=0\)

\(\Leftrightarrow2a^2-4a-5a+10=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=\frac{5}{2}\end{cases}}\)

+) Với \(a=\frac{5}{2}\Rightarrow x+\frac{1}{x}=\frac{5}{2}\)

\(\Rightarrow x^2+1=\frac{5x}{2}\)

\(\Rightarrow2x^2+2-5x=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\) ( thỏa mãn)

+) Với \(a=2\Rightarrow x+\frac{1}{x}=2\)

\(\Rightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy pt đã cho có tập nghiệm \(S=\left\{1,\frac{1}{2},2\right\}\)

Khách vãng lai đã xóa
Thịnh Phan
Xem chi tiết
KAl(SO4)2·12H2O
30 tháng 4 2020 lúc 15:17

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
30 tháng 4 2020 lúc 15:45

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

Khách vãng lai đã xóa
Phạm Tuấn Kiệt
Xem chi tiết
Minh Triều
17 tháng 7 2016 lúc 8:21

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

Phạm Tuấn Kiệt
17 tháng 7 2016 lúc 8:26

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

Phương Trình Hai Ẩn
17 tháng 7 2016 lúc 8:44

cách 2 dễ hiểu hơn đó :)

Xem chi tiết

bây giờ mới thấy bài này nhảm v~

Phương Anh (NTMH)
17 tháng 7 2016 lúc 11:22

hjjj

e nek

Nữ thần Sắc Đẹp Anime
Xem chi tiết

a)\(0,45-\left|1,3-x\right|=0\)

\(\Leftrightarrow\left|1,3-x\right|=0,45-0\)

\(\Leftrightarrow\hept{\begin{cases}1,3-x=0,45\\1,3-x=-0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1,3-0,45\\x=1,3+0,45\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0,85\\x=1,75\end{cases}}\)

Vậy x = 0,85 ; x = 1,75

b) \(\left|3x-5\right|-\frac{1}{7}=\frac{1}{3}\)

\(\Leftrightarrow\left|3x-5\right|=\frac{1}{3}+\frac{1}{7}\)

\(\Leftrightarrow\left|3x-5\right|=\frac{10}{21}\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=\frac{10}{21}\\3x-5=-\frac{10}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{10}{21}+5\\3x=-\frac{10}{21}+5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=\frac{115}{21}\\3x=\frac{95}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{115}{63}\\x=\frac{95}{63}\end{cases}}\)

Vậy x = .........................

Ren Nishiyama
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết