Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhok dễ thương
Xem chi tiết
Hói Hà
Xem chi tiết
Hiếu Lê
25 tháng 8 2017 lúc 8:38

\(\sqrt{1+\sqrt{2}\sqrt{3}< 2}\)

CHUẨN KO CẦN CHỈNH LUÔN !

Hói Hà
Xem chi tiết
Trịnh Thành Công
25 tháng 8 2017 lúc 8:01

Ta có:

\(\sqrt{1+\sqrt{2\sqrt{3}}}\)và \(2\)

\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2\) và \(4\)

   Do đó ta có:\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2=1+\sqrt{2\sqrt{3}}=1+\sqrt{\sqrt{12}}\)

                      \(4=1+3=1+\sqrt{9}=1+\sqrt{\sqrt{81}}\)

Vì \(\sqrt{\sqrt{12}}< \sqrt{\sqrt{81}}\)

            \(\Rightarrow\sqrt{1+\sqrt{2\sqrt{3}}}< 2\)

Nguyễn Dương
Xem chi tiết
Huong Bui
Xem chi tiết
Trần Bily
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2022 lúc 10:15

\(A=\sqrt{\dfrac{1}{2-\sqrt{3}}}=\sqrt{2+\sqrt{3}}< 2+\sqrt{3}\)

thủy Trần
Xem chi tiết
Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 23:31

a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)

b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)

\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)

mà -1512>-2058

nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)

Hoàng Phúc Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 13:31

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)

\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

Do đó: A=B

Nguyễn Ngọc Huy Toàn
21 tháng 5 2022 lúc 13:34

\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)

\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

--> Bằng nhau