so sánh: \(3-2\sqrt{3}và2\sqrt{6}-5\)
so sánh
\(3+\sqrt{5}và2\sqrt{2}+\sqrt{6}\)
\(\sqrt{15}-\sqrt{14}và\sqrt{14}-\sqrt{13}\)
\(\sqrt{2009}+\sqrt{2001}và2\sqrt{2010}\)
So sánh:
\(\sqrt{1+\sqrt{2\sqrt{3}}}và2\)
\(\sqrt{1+\sqrt{2}\sqrt{3}< 2}\)
CHUẨN KO CẦN CHỈNH LUÔN !
So sánh:
\(\sqrt{1+\sqrt{2\sqrt{3}}}và2\)
Ta có:
\(\sqrt{1+\sqrt{2\sqrt{3}}}\)và \(2\)
\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2\) và \(4\)
Do đó ta có:\(\Leftrightarrow\left(\sqrt{1+\sqrt{2\sqrt{3}}}\right)^2=1+\sqrt{2\sqrt{3}}=1+\sqrt{\sqrt{12}}\)
\(4=1+3=1+\sqrt{9}=1+\sqrt{\sqrt{81}}\)
Vì \(\sqrt{\sqrt{12}}< \sqrt{\sqrt{81}}\)
\(\Rightarrow\sqrt{1+\sqrt{2\sqrt{3}}}< 2\)
So sánh
\(3+\sqrt{5}và2\sqrt{2}+\sqrt{6}\\ 2\sqrt{3}+4và3\sqrt{2}+\sqrt{10}\\ 18và\sqrt{15}\cdot\sqrt{17}\)
1.so sánh
\(a.3\sqrt[3]{2}và\sqrt[3]{55}\)
\(b.3\sqrt[3]{4}và2\sqrt[3]{13}\)
so sánh \(\sqrt{\dfrac{1}{2-\sqrt{3}}}và2+\sqrt{3}\)
\(A=\sqrt{\dfrac{1}{2-\sqrt{3}}}=\sqrt{2+\sqrt{3}}< 2+\sqrt{3}\)
\(\sqrt{5}+\sqrt{7}và2\sqrt{6}\)
so sánh
so sánh
\(;\sqrt{2}+1vs\sqrt[3]{7+5\sqrt{2};}\) \(-6\sqrt[3]{7}\&7\sqrt[3]{\left(-6\right)}\)\(;\sqrt[3]{4}+\sqrt[3]{7}\&\sqrt[3]{11}\)\(;\sqrt[3]{10}-2vs\sqrt[3]{2}\)
a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)
b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)
\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)
mà -1512>-2058
nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau