Phân tích thành nhân tử :
\(x^2+4xy+4y^2-2x-4y+1\)
phân tích đa thức thành nhân tử: x^2-4xy+4y^2-2x+4y-35
phân tích đa thức thành nhân tử: x^2-4xy+4y^2-2x+4y-35
phân tích đa thức thành nhân tử:
x^4-4xy+4y^2-2x+4y-35
phân tích thành nhân tử
`3x^2 -3xy-5x+5y`
`2x^3 y-2xy^3 -4xy^2 -2xy`
`x^2 -1+2x-y^2`
`x^2 +4x-2xy-4y+4y^2`
`x^3 -2x^2 +x`
`2x^2 +4x+2-2y^2`
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích thành nhân tử
\(1-8x+16x^2 -y^2\)
\(x^2 -2xy+y^2 -z^2\)
\(x^2 +4xy-16+4y^2\)
\(x^2 -16-4xy+4y^2\)
1: =(16x^2-8x+1)-y^2
=(4x-1)^2-y^2
=(4x-1-y)(4x-1+y)
2: =(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
3: =(x^2+4xy+4y^2)-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
4: =(x^2-4xy+4y^2)-16
=(x-2y)^2-4^2
=(x-2y-4)(x-2y+4)
phân tích thành đa thức nhân tử
a, (x^2 + 2x)^2 + 9x^2 + 18x + 20
b, x^3 + 2x - 3
c, x^2 - 4xy + 4y^2 - 2x + 4y - 35
a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)
\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)
\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1
b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)
c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)
\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)
phân tích thành nhân tử
1.-3x^4y-6x^3y^2-3x^2y^3
2. 4a^2 - x^2- 2x- 1
3. m^2- 6m+ 9 - x^2 + 4xy - 4y^2
Phân tích đa thức thành nhân tử
x^2- 2x + 2y - xy
x^2 + 4xy -16 + 4y^2
x2 - 2x + 2y - xy = (x2 - 2x) - (xy - 2y) = x(x - 2) - y(x - 2) = (x - 2)(x - y)
x2 + 4xy - 16 + 4y2 = (x2 + 4xy + 4y2) - 16 = (x + 2y)2 - 16 = (x + 2y + 4)(x + 2y - 4)