Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thùy Dung
Xem chi tiết
Minh Hiếu
14 tháng 9 2021 lúc 20:21

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

Minh Hiếu
14 tháng 9 2021 lúc 20:18

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

Trần Lưu Gia Ngân
Xem chi tiết
Tài Nguyễn Tuấn
27 tháng 7 2016 lúc 21:49

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

\(=>m=5\)

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

\(=>n=3\)

Lê Nguyên Hạo
27 tháng 7 2016 lúc 21:51

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=> m =5

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=> n = 3

đỗ thị lan anh
28 tháng 7 2016 lúc 6:42

\(\left(\frac{1}{2}\right)^M\)=\(\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^M=\left(\frac{1}{2}\right)^5\)

-->M=5

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

--> n=3

Nguyễn Thị Đoan Trang
Xem chi tiết
Vũ Nga
Xem chi tiết
Vũ Nga
18 tháng 8 2020 lúc 11:22

các bạn giúp mình với mình đang cần đáp án gấp

Khách vãng lai đã xóa
Xyz OLM
18 tháng 8 2020 lúc 11:46

1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)

=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)

b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)

lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)

Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)

2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{20+xy}{4x}=\frac{1}{8}\)

=> 4x = 8(20 + xy)

=> x = 2(20 + xy)

=> x = 40 + 2xy

=> x - 2xy = 40

=> x(1 - 2y) = 40

Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)

mà x(1 - 2y) = 40

=> 1 - 2y \(\inƯ\left(40\right)\)(2)

Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)

Nếu 1 - 2y = 1 => x = 40

=> y = 0 ; x = 40

Nếu 1 - 2y = 5 => x = 8

=> y = -2 ; x = 8 

Nếu 1 - 2y = -1 => x = -40

=> y = 1 ; y = - 40

Nếu 1 - 2y = -5 => x = -8

=> y = 3 ; x =-8

Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)

4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)

b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)

c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)

Khách vãng lai đã xóa
Quốc Tuấn Nguyễn
Xem chi tiết
Tran Le Khanh Linh
6 tháng 6 2020 lúc 10:24

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

Khách vãng lai đã xóa
Tran Le Khanh Linh
6 tháng 6 2020 lúc 10:28

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

Khách vãng lai đã xóa
Nguyen Ngoc Lien
Xem chi tiết
Isolde Moria
14 tháng 9 2016 lúc 15:30

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=> m = 5

Vậy m = 5

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=> n = 3

Vậy n = 3

Đỗ Thị Kim Ngân
Xem chi tiết
Trần Đức Thắng
26 tháng 6 2015 lúc 21:18

a, ( 1/2 ) ^ m = ( 1/2) ^5 

=> m = 5

b, ( 7/5) ^n = 343 / 125

=> ( 7/5)^n = (7/5) ^ 3

=> n = 3 

Đúng cho tui nha

Minh Triều
26 tháng 6 2015 lúc 21:22

\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=>m=5

\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=>n=3

 

l҉o҉n҉g҉ d҉z҉
5 tháng 8 2017 lúc 17:32

Lời giải:

a)    => 

b)     =>    

Ngô Lê Minh Anh
Xem chi tiết
Đặng Thùy Linh
Xem chi tiết