Hãy tìm các số tự nhiên m và n, biết :
a) \((\frac{-1}{5})^n\)= \(\frac{-1}{125}\)
b) \((\frac{-2}{11})^m\)= \(\frac{4}{121}\)
c) \(7^{2n}+7^{2n+2}=2450\)
Tìm các số tự nhiên m,n biết :
a) \(\left(-\dfrac{1}{5^{ }}\right)^n\) =\(-\dfrac{1}{125}\)
b)\(\left(-\dfrac{2}{11^{ }}\right)^m=\dfrac{4}{121}\)
c)\(7^{2n}+7^{2n+2}=2450\)
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\) b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)
\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\) \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)
⇒n=3 ⇒m=2
Ta thừa nhận tính chất sau đây: Với a khác 0, a khác +_ 1, nếu a^m = a^n thì m=n. Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a,\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b,\(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(=>m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(=>n=3\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m =5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
\(\left(\frac{1}{2}\right)^M\)=\(\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^M=\left(\frac{1}{2}\right)^5\)
-->M=5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
--> n=3
cho \(A=\frac{5}{6}.\frac{13}{6^2}....\frac{3^{2n}+2^{2n}}{6^{2n}}\)và \(B=\frac{1}{6^{2n+1}-1}\)với n thuộc N
a) Chứng minh: \(M=\frac{A}{B}\)là số tự nhiên
b) Tìm n để M là số nguyên tố
Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó
a. \(A=\frac{3n+9}{n-4}\) b.\(B=\frac{6n+5}{2n-1}\)
Bài 2: Tìm số nguyên x và y biết rằng:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu .Tổng của tất cả các hiệu đó bằng bao nhiêu ?
Bài 4:Thực hiện các phép tính:
a.\(\frac{(\frac{3}{10}-\frac{4}{15}-\frac{7}{20})\times\frac{5}{19}}{(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35})\times\frac{-4}{3}}\)
b.\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
c.\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
các bạn giúp mình với mình đang cần đáp án gấp
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Ta thừa nhận tính chất sau đây : Với a \(\ne\pm1\) ; nếu am = an thì m = n. Dựa vào tính chất này, hãy tìm ra các số tự nhiên m và n, biết :
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m = 5
Vậy m = 5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
Vậy n = 3
Ta thừa nhận tính chất sau đây: Với a khác 0, a khác + hoặc - 1, nếu am = an thì m = n. Dựa vào tính chất này, hãy tìm các số tự nhiên m và n, biết:
a)\(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
a, ( 1/2 ) ^ m = ( 1/2) ^5
=> m = 5
b, ( 7/5) ^n = 343 / 125
=> ( 7/5)^n = (7/5) ^ 3
=> n = 3
Đúng cho tui nha
\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=>m=5
\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=>n=3
Tìm các số tự nhiên n để các phân số sau tối giản:
a)\(\frac{2n+3}{4n+1}\)
b)\(\frac{3n+2}{7n+1}\)
c)\(\frac{2n+7}{5n+2}\)
câu 1:Tìm x
(x-3)+(x-2)+(x-1)+...+(x+10)+11=11 - 72
câu 2: Cho m và n là các số nguyên dương
A = \(\frac{2+4+6+...+2m}{m}\)B = \(\frac{2+4+6+...+2n}{n}\)
Biết A < B so sánh m và n.
câu 3: Cho 16 số nguyên. Tích của 3 số bất kì luôn là một số âm. Chứng minh rằng tích của 16 số đó là một số dương
.câu 4: Cho a = -20, b - c = -5, hãy tìm A biết A2= b(a-c) - c(a-b)