Cho hình thang ABCD có A=B=900 và AB=Bc=\(\frac{AD}{2}\). Lấy điểm M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA , Mx cắt CD tại N . CMR : tam giác AMN vuông cân.
Cho hình thang ABCD có góc A=góc b = 900 và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA, Mx cắt CD tại N. CMR: tam giác AMN vuông cân
Cho hình thang có góc A= góc B = 90 độ và BC= AB = 1/2 AD. Lấy điểm M thuộc đáy nhỏ BC. Kẻ Mx vuông góc MA, Mx cắt CD tại N. CMR tam giác AMN vuông cân .
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang ABCD có góc A=B=90 độ và BC=AB=AD/2. Lấy điểm M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA, Mx cắt CD tại N. Chứng minh rằng tam giác AMN vuông cân.
Cm được AIM =1350 ( lấy I Trên AB sao cho BI = BM) suy ra AI =CM , góc CMN =góc IAM ( cùng phụ AMB) vậy tam giác AIM =tam giác MCN ( c -g c)
Cho hình thang ABCD có góc A= góc B= 90 và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA, Mx cắt CD tại N. Chứng minh rằng tam giác AMN vuông cân
Gọi E là trung điểm AD
→ AE = ED = 1212 AD
Mà BC = 1212 AD (gt)
⇒ AE = BC (= 1212 AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆAA^ = ˆBB^ = 90o90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACEACE^ = 45o45o
⇒ ˆACDACD^ = 90o90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIMAIM^= ˆNICNIC^ (2 góc đối đỉnh)
ˆIMAIMA^ = ˆICNICN^
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINIAINI = IMICIMIC (cặp cạnh t/u)
⇒ AIIMAIIM = NIICNIIC
Xét ΔAIN và ΔMIC có:
AIIMAIIM = NIICNIIC
ˆAINAIN^ = ˆMICMIC^(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANIANI^ = ˆICMICM^ = ˆACBACB^ = 45o45o (Vì ΔABC vuông cân tại B)
→ ˆANMANM^ = 45o45o
Lại có: ˆAMNAMN^ = 90o90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)
Cho hình thang ABCD có góc A = B = 90 và AB = BC +AD/2 . Lấy điểm M thuộc đáy nhỏ BC . Kẻ Mx vuông góc MA , Mx cắt CD tại N. Chứng minh tam giác AMN vuông cân
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
cho hình thang ABCD có ^A=^B=900 và BC = AB = 1/2AD. Lấy M thuộc đáy nhỏ BC. Kẽ Mx vuông góc MA, Mx cắt CD tại N. Cmr tam giác AMN vuông cân
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Gọi E là trung điểm AD
→ AE = ED = \(\frac{1}{2}\) AD
Mà BC = \(\frac{1}{2}\)AD (gt)
⇒ AE = BC (= \(\frac{1}{2}\) AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆA = ˆB = 90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACE = 45o
⇒ ˆACD = 90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIM= ˆNIC (2 góc đối đỉnh)
ˆIMA = ˆICN
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINI= IMICI (cặp cạnh t/u)
⇒ AIIM = NIIC
Xét ΔAIN và ΔMIC có:
AIIM = NIIC
ˆAIN = ˆMIC(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANI = ˆICM = ˆACB = 45o (Vì ΔABC vuông cân tại B)
→ ˆANM= 45o
Lại có: ˆAMN = 90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)
k cho mình nha
cho hình thang ABCD có góc A = B = 90, và BC=AB=1/2AD. Lấy M thuộc đáy nhỏ BC. Kẻ Mx vuông góc với MA, MX cắt OE tại N.C/M
Tam giác AMN vuông cân
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
. Cho hình thang ABCD có ^A=^B=90 và BC=AB=1/2AD. Lấy M thuộc đáy nhỏ BC.Kẻ đường Mx vuông góc MA,Mx cắt CD tại N.CMR : Tam giác AMN vuông cân
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath