CMR : \(\sqrt{2\sqrt{3\sqrt{4\:...\:\sqrt{2000}}}}\)< 3
Chỉ giúp mình với , mk cảm ơn
a) cho a , b , c thuộc Q thỏa mãn ab + bc + ca = 1 . CMR :
A = căn của ( a^2 + 1 ) ( b^2 + 1 ) ( c^2 + 1 ) là số hữu tỉ
b ) B = \(\sqrt{2\:+\:\sqrt{2\:+\:\sqrt{2\:+\:...\:+\:\sqrt{2}}}}\) có 100 dấu căn
CMR : B không phải là số tự nhiên
c ) CMR : \(\sqrt{2\sqrt{3\sqrt{4\:...\:\sqrt{2000}}}}\)< 3
Các bạn giúp mình với , mk cảm ơn
a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)
\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)
Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ
b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)
\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)
=> \(1< B< 2\) B không là số tự nhiên
c) câu này có ng làm r ib mk gửi link
à chỗ câu b) mình nhầm tí nhé
\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)
Sửa dấu "=" thành ">" hộ mình
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
bạn nào làm giúp mk câu này với ạ
xin cảm ơn
\(\dfrac{\sqrt{28}-2\sqrt{3}}{\sqrt{7}-\sqrt{3}}\)
Các bạn giúp mình với. Mình cảm ơn rất rất nhiều !
\(\dfrac{2\sqrt{7}-2\sqrt{3}}{\sqrt{7}-\sqrt{3}}=2\)
ai giúp mình giải bài này với được k mình đang cần gấp ( xin cảm ơn)
Bài 1:
a,\(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\)
b, \(\sqrt{2x-5}+\sqrt{x+2}=\sqrt{2x+1}\)
c, \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
d, \(\sqrt{x+9}=5-\sqrt{2x+4}\)
Bài 2:
a,\(\sqrt{x+4\sqrt{x}+4}=5x+2\)
b, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
c, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
d,\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Bài 3:
a, \(x^2-7x=6\sqrt{x+5}-30\)
b, \(\sqrt{1-x^2}+\sqrt{x+1}=0\)
c, \(x+y+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{-5}\)( câu này có thể sai đề nha )
d, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)
a) CMR : \(\sqrt{2\sqrt{3\sqrt{4\: .\: .\: .\: \sqrt{2000}}< \: 3}}\)
b ) cho : a , b , c. Thuộc Q , thỏa mãn ab + bc + ca = 1
CMR : căn của ( a^2 + 1 ) ( b^2 + 1 ) ( c^2 + 1 ) là số hữu tỷ
c ) B = \(\sqrt{2\:+\:\sqrt{2\:+\:...\:+\:\sqrt{2}}}\)có 100 dấu căn
CMR. : B ko phải là số tự nhiên
Mọi người biết chỉ giúp cháu với , cháu cảm ơn
Giúp mình 2 câu này với ạ. Mình xin cảm ơn.
a) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)
\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)
\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)
\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)
\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)
\(=\)\(3\sqrt{6}+9\)
Chúc bạn học tốt ~
\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)
\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) )
\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)
\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) )
\(=\)\(1\)
Chúc bạn học tốt ~
PS : mới lớp 8 sai thì thông cảm >.<
\(\sqrt{\left(\sqrt{9}-\sqrt{6}\right)^2}\) + \(\sqrt{\left(\sqrt{24}-\sqrt{9}\right)^2}\)
\(\sqrt{9}-\sqrt{6}\) + \(\sqrt{24}-\sqrt{9}\) vì \(\sqrt{9}>\sqrt{6}\),\(\sqrt{24}>\sqrt{9}\)
\(3-\sqrt{6}\) + \(2\sqrt{6}-3\)
= \(\sqrt{6}\)
Giúp mình với cảm ơn ạ
Giải các pt vô tỉ sau
1)\(\sqrt{21-x}+1=x\)
2)\(\sqrt{8-x}+2=x\)
3)\(1+\sqrt{3x+1}=3x\)
4)\(2+\sqrt{3x-5}=\sqrt{x+1}\)
1) Ta có: \(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1-21+x=0\)
\(\Leftrightarrow x^2-3x-20=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)
1)\(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow21-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
2)\(\sqrt{8-x}+2=x\)
\(\Leftrightarrow8-x=\left(x-2\right)^2\)
\(\Leftrightarrow8-x=x^2-4x+4\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
3)\(1+\sqrt{3x+1}=3x\)
\(\Leftrightarrow3x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow3x+1=9x^2-6x+1\)
\(\Leftrightarrow9x^2-9x=0\Leftrightarrow9x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Tìm số tự nhiên x để: \(\sqrt{2}.\sqrt[3]{3}.\sqrt[4]{4}...\sqrt[x-1]{x-1}.\sqrt[x]{x}\approx2555,902225\)
Giúp mình làm với, mình cảm ơn nhiều!
Tìm số tự nhiên x để: \(\sqrt{2}.\sqrt[3]{3}.\sqrt[4]{4}...\sqrt[x-1]{x-1}.\sqrt[x]{x}\approx2555,902225\)
Giúp mình làm với, mình cảm ơn nhiều!