Chứng minh rằng không tồn tại số hữu tỉ x thoả mãn: x2=6
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
Chứng minh rằng không có số hữu tỉ nào thoả mãn: a) x2 = 7 b) x2 – 3x = 1 c) x + với x khác 1 và -1.
Giúp mình với TT
1. Tồn tại hay không các số hữu tỉ x,y thoả mãn x^2 + y^2 = 3
2. Tồn tại hay không các số hữu tủ x,y thoả mãn x^3 + 2y^3 = 4
Giúp mình với ạ TT
1. Tồn tại hay không số hữu tỉ x,y thoả mãn x2 + y2 = 3
2. Tồn tại hay không số hữu tỉ x,y thoả mãn x3 + 2y3 = 4
Tồn tại hay không các số x,y hữu tỉ thoả mãn: \(x^3+2y^3=4\)
Chứng minh rằng không tồn tại 2 số hữu tỉ x,y trái dấu k đối nhau thỏa mãn đẳng thức 1/x+y= 1/x+1/y
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)
=> (x + y)2 = xy
Vì (x + y)2 >= 0 (1)
Mà xy < 0 (vì x, y trái dấu) (20
Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.
Cho **** nha
chứng minh rằng không tồn tại cặp số nguyên x,y thoả mãn x^2-2018=y^2
Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)
\(\Rightarrow x^2-y^2=2018\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)
Dễ c/m: x và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)
Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)
Mà 2018 không chia hết cho 4 nên điều g/s là sai
Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)
Ta có : x2 - 2018 = y2
=> x2 - y2 = 2018
=> (x + y)(x - y) = 2018
Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)
Lập bảng xét 8 trường hợp ta có :
x - y | 1 | 2018 | 2 | 1009 | -1 | -2018 | -1009 | -2 |
x + y | 2018 | 1 | 1009 | 2 | -2018 | -1 | -2 | -1009 |
x | 2019/2 | 2009/2 | 1011/2 | 1011/2 | -2019/2 | -2019/2 | -1011/2 | -1011/2 |
y | 2017/2 | -2007/2 | 1007/2 | -1007/2 | -2017/2 | 2017/2 | -1007/2 | 1007/2 |
=> Không tồn tại cặp số nguyên x,y thỏa mãn
Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi
Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)
Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại
Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại
Thế nên không tồn tại x,y nguyên => đpcm
chứng minh rằng ko tồn tại 2 số hữu tỉ x và y trái dấu không đối nhau để thỏa mãn đẳng thức 1/x-y=1/x+1/y
Chứng minh rằng không tồn tại số hữu tỷ x thỏa mãn x^2 = 2
Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)
⇒ Không số nào có bình phương bằng 2
⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2
⇒ (đpcm)