Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hello Hello

Chứng minh rằng không tồn tại số hữu tỉ x thoả mãn: x2=6

Phong trương
5 tháng 7 2019 lúc 9:57

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

T.Ps
5 tháng 7 2019 lúc 9:57

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

Kiệt Nguyễn
5 tháng 7 2019 lúc 10:04

\(x^2=6\Leftrightarrow x=\sqrt{6}\)

Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :

                \(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)

Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)

Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)

suy ra \(5n^2⋮3\)

Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)

Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)

Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.

Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)


Các câu hỏi tương tự
Hello Hello
Xem chi tiết
Phạm Thị Thu Hiền
Xem chi tiết
Vũ Ngọc Bích
Xem chi tiết
leonard
Xem chi tiết
Mitt
Xem chi tiết
On The Face
Xem chi tiết
Thái Viết Nam
Xem chi tiết
vutfyi
Xem chi tiết
Hà Thanh Tùng
Xem chi tiết