Tính:
A=\(\frac{\sqrt{24-6\sqrt{15}}-\sqrt{15}}{\sqrt{3}}\)
Rút gọn:
a. \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
b.\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
Lời giải:
a)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3+1-2\sqrt{3}}\)
\(=\sqrt{(3+1+2\sqrt{3})+2+(2\sqrt{6}+2\sqrt{2})}-\sqrt{(\sqrt{3}-\sqrt{1})^2}\)
\(=\sqrt{(\sqrt{3}+1)^2+2\sqrt{2}(\sqrt{3}+1)+2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{(\sqrt{3}+1+\sqrt{2})^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=\sqrt{3}+1+\sqrt{2}-(\sqrt{3}-1)=2+\sqrt{2}\)
b)
\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right)(\sqrt{6}+11)\)
\(=\left(\frac{15(\sqrt{6}-1)}{5}+\frac{4(\sqrt{6}+2)}{2}-\frac{12(3+\sqrt{6})}{3}\right)(\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)\)
\(=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
thực hiện phép tính:
a)\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b)\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
c)\(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)
b)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)
c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)
a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{3-12\sqrt{6}}\)
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)
cần gấp
câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)
\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=4-\sqrt{15}+\sqrt{15}-3=1\)
\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)
\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)
\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=4-\sqrt{15}+\sqrt{15}-3\)
=1
11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)
13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)
17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)
18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)
19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)
20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)
21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)
22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)
23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)
24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)
26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)
28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)
29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)
\(\frac{\sqrt{\sqrt{15}-\sqrt{6}}+\sqrt{\sqrt{15}+\sqrt{6}}}{\sqrt{\sqrt{15}+3}}\)
Đưa thừa số ra ngoài dấu căn
a) \(6\left(\sqrt{15}-4\right)\sqrt{\frac{31+8\sqrt{15}}{12}}\)
b) \(\frac{2+2\sqrt{5}}{3-\sqrt{5}}\sqrt{\frac{24-8\sqrt{5}}{3+3\sqrt{5}}}\)
_Trục căn thức ở mẫu
c) \(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Giúp mình với, mình đang cần gấp
\(\left(\sqrt{4+\sqrt{15}}+\sqrt{6-\sqrt{35}}-\sqrt{\frac{7}{2}}\right)^2\)\(+\left(\sqrt{4-\sqrt{15}}-\sqrt{6-\sqrt{35}}+\sqrt{\frac{3}{2}}\right)^2\)
TÍNH GIÁ TRỊ Ạ
Tính tích:
\(A=\frac{3}{\sqrt[2]{2}}x\frac{8}{\sqrt[2]{3}}x\frac{15}{\sqrt[2]{4}}x\frac{24}{\sqrt[2]{5}}x....x\frac{899}{\sqrt[2]{30}}\)
Thực hiện phép tính:
a)\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{2}\)
\(b,\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(7-5\right)\)
\(=-2\)