\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\) giải dùm minh nhá
\(\frac{12}{1-9x^2}\)=\(\frac{1-3x}{1+3x}\)-\(\frac{1+3x}{1-3x}\)
Ta có: \(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\)
\(\Leftrightarrow\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Leftrightarrow\frac{\left(1-3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)
\(\Leftrightarrow\left(1-3x\right)\left(1+3x\right)-\left(1+3x\right)\left(1-3x\right)=12\)
\(0=12\)
=> x vô nghiệm
ĐKXĐ: \(\left(1+3x\right)\left(1-3x\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}1-3x\ne0\\1+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-1}{3}\end{cases}}}\)
giải phương trình
a) \(\frac{4x-8}{2x^2+1}=0\)
b)\(\frac{x^2-x-6}{x-3}=0\)
c)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
d)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
a.ĐK: 2x2+1\(\ne0\) \(\forall x\)
Để phương trình bằng 0 thì 4x-8=0 ( Vì 2x2+1 >0 với mọi x)
\(\Leftrightarrow x=2\) (TM)
Vậy ...
b.ĐK: x-3\(\ne0\) \(\Leftrightarrow x\ne3\)
Để phương trình bằng 0 thì x2-x-6=0 (Vì x-3\(\ne0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=2\:\left(TM\right)\\x=-3\:\left(TM\right)\end{matrix}\right.\)
Vậy ...
c. ĐK: x\(\ne\)2
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\)
\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\)
\(\Leftrightarrow2x+10-3x+6=6x-9\) (x\(\ne\)2)
\(\Leftrightarrow x=\frac{25}{7}\left(TM\right)\)
Vậy ...
d. ĐK: \(x\ne\pm\frac{1}{3}\)
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\frac{12}{1-9x^2}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{1-9x^2}\)
\(\Leftrightarrow12=1-6x+9x^2-1-6x-9x^2\) (\(x\ne\pm\frac{1}{3}\))
\(\Leftrightarrow x=-2\:\left(TM\right)\)
Vậy...
\(\frac{12}{1-9x}\)= \(\frac{1-3x}{1+3x}\)- \(\frac{1+3x}{1-3x}\)
GIẢI PHƯƠNG TRÌNH
a)\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
b)\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
c)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
d)\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
\(\frac{2x-8}{6}-\frac{3x-1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
\(\frac{2x-8}{6}-\frac{3x-1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
\(\Leftrightarrow\frac{2x-8}{6}-\frac{3x-1}{4}-\frac{9x-2}{8}-\frac{3x-1}{12}=0\)
\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x-1\right)}{24}-\frac{3\left(9x-2\right)}{24}-\frac{2\left(3x-1\right)}{24}=0\)
\(\Leftrightarrow\frac{8x-32-18x+6-27x+6-6x+2}{24}=0\)
\(\Leftrightarrow\frac{-43x-18}{24}=0\)
\(\Rightarrow-43x-18=0\)
\(\Leftrightarrow-43x=18\)
\(\Leftrightarrow x=\frac{-18}{43}\)
Vậy...
bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
Phương trình chứa ẩn ở mẫu
Giai các phương trình sau
1. \(\frac{7x-3}{x-1}=\frac{2}{3}\)
2. \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
3. \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
4. \(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
5. \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
6. \(1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(1.\frac{7x-3}{x-1}=\frac{2}{3}\) ( \(x\ne1\))
\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)
\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\frac{7}{19}\)
\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)
\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)
\(\Leftrightarrow3x=-15\)
\(\Leftrightarrow x=-5\)
\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)
\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)
\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)
\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)
\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)
\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)
\(\Leftrightarrow4x^2+5x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)
\(\left(2x+\frac{5}{4}\right)^2>0\)
\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)
=> PT vô nghiệm
\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)
\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\)
\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)
\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\frac{16}{6}\)
\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)
\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)
\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)
\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)
\(\Leftrightarrow x^4+x^3-4x-8=0\)
\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)
Đến đấy mk tắc r xl bạn nhé
\(A=\left(\frac{x+1}{3x-1}-\frac{1}{3x+1}+\frac{3x}{9x^2-1}\right):\left(1-\frac{3x-2}{3x+1}\right)\)
Rút gọn A
giải phương trình sau:
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\\\)
b) \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
c)\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
d) \(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
b) Bạn kiểm tra lại đề bài
c) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8}{16x^2-1}\left(x\ne\pm\frac{1}{4}\right)\)
\(\Leftrightarrow\frac{3}{1-4x}-\frac{2}{4x+1}+\frac{8}{16x^2-1}=0\)
\(\Leftrightarrow\frac{-3}{4x+1}-\frac{2}{4x+1}+\frac{8}{\left(4x+1\right)\left(4x-1\right)}=0\)
\(\Leftrightarrow\frac{-3\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3}{\left(4x-1\right)\left(4x+1\right)}-\frac{8x-2}{\left(4x-1\right)\left(4x+1\right)}+\frac{8}{\left(4x-1\right)\left(4x+1\right)}=0\)
\(\Leftrightarrow\frac{-12x+3-8x+2+8}{\left(4x-1\right)\left(4x+1\right)}=0\)
=> -20x+13=0
<=> -20x=-13
<=> \(x=\frac{13}{20}\left(tmđk\right)\)