1.Cho A thuộc N và a chia 4 dư 3.Chứng minh a^2 chia cho 4 dư 1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
1) Biết số nguyên a chia cho 5 dư 3. Chứng minh a2 chia cho 5 dư 4
2) Biết số nguyên m chia 5 dư 4 và số nguyên n chia 5 dư 3. Chứng minh rằng m^2 +n^2 chia hết cho 5
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)
a)tìm số tự nhiên a nhỏ nhất sao cho a chia 2 dư 1, chia 3 dư 1,chia 5 dư 4, chia 7 dư 3
b)chứng mình rằng
7n+10 và 5n+7(với n thuộc N) là hai số nguyên tố cùng nhau
A) a chia 2 dư 1 nên a+1 chia hết cho 2 hay a+11 cũng chia hết cho 2
a chia 3 dư 1 nên a+2 chia hết cho 3 hay a+2+9=a+11 cũng chia hết cho 3
a chia 5 dư 4 nên a+1 chia hết cho 5, hay a+1+10=a+11 cũng chia hết cho 5
a chia 7 dư 3 nên a+4 chia hết cho 7 hay a+4+7=a+11 chia hết cho 7
Suy ra a+11 cùng chia hết cho 2; 3; 5; 7
a là số nhỏ nhất nên a+11 cũng là số nhỏ nhất
Do đó, a+11=BCNN (2;3;5;7)
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau
Do vậy, a+11=2.3.5.7=210
Vậy a=199
B)Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 1: Tìm STN a biết a chia 3 dư 2, a chia 5 dư 3, a chia 11 dư 6 ( a<500)
Bài 2: Tìm BC nhỏ hơn 1000 của 60, 85, 90
Bài 3: Tìm x thuộc N biết a chia 3 dư 2 a chia 4 dư 3 và achia 17 dư 9 ( a có 3 chữ số )
Bài 5: Cho A = 1+4 + 42 +43 + 44 +....+449+450
tìm dư của phép chia A dư 5
Bài6: Cho S =1+5+52+53+...+548+549
chứng minh : S chia hết cho 6
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$
Bài 3:
$a-2\vdots 3; a-3\vdots 4$
$\Rightarrow a+1\vdots 3$ và $a+1\vdots 4$
$\Rightarrow a+1=BC(3,4)$
$\Rightarrow a+1\vdots 12$
Lại có:
$a-9\vdots 17$ nên $a=17k+9$ với $k$ tự nhiên.
$a+1=17k+10\vdots 12$
$\Rightarrow 5k+10\vdots 12$
$\Rightarrow 5(k+2)\vdots 12$
$\Rightarrow k+2\vdots 12\Rightarrow k=12m-2$ với $m$ tự nhiên.
$\Rightarrow a=17k+9=17(12m-2)+9=204m-25$
$a$ có 3 chữ số
$\Rightarrow 100\leq a\leq 999$
$\Rightarrow 100\leq 204m-25\leq 999$
$\Rightarrow 0,61\leq m\leq 5,01$
$\Rightarrow m\in \left\{1; 2; 3;4; 5\right\}$
$\Rightarrow a\in \left\{179; 383; 587; 791; 995\right\}$
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
1.cho 4 số tự nhiên a ,b,c,d . a: 7 dư 6 , b : 7 dư 4 , c : 7 dư 3 , d chia 7 dư 2. chứng minh rằng ; a+b-c chia hết cho 7 , a-b-d chia hết cho 7
2) chứng minh rằng : n . ( n+8) . (n +13 ) chia hết cho 3 ( n là số tự nhiên)
a )cho a và b là 2 số tự nhiên. Biết a chia 3 dư 1, b chia 3 dư 2. chứng minh ab chia 3 dư 2
b) biết số tự nhiên a chia 5 dư 4.Chứng minh a2 chia 5 dư 1
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.