Cho hình thang cân ABCD , đáy AB, CD . Biết AC vuông góc với BD . Đường cao BH . Từ Bỏ kẻ đường thẳng song song với AC cắt DC tại M . C/M tam giác DBM vuông cân
B, C/M AB+DC = 2B
Cho hình thang ABCD ( AB//CD) có AC =BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E.
C/m rằng :Tam giác BDE là tam giác cân
Trả lời :
vì AB//DC(gt) suy ra AB//DE
và AC//BE(gt)
do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE
Mà AC=BD(gt)
suy ra BD=BE
Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)
Cho hình thang cân ABCD ( AB // CD ) . Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E . Chứng minh : a ) ∆ACB = ∆ EBC b ) ∆BDE là tam giác cân c ) Góc ACD = góc BDC
a: Xét ΔACB và ΔEBC có
\(\widehat{ABC}=\widehat{ECB}\)(AB//EC)
BC chung
\(\widehat{ACB}=\widehat{EBC}\)(AC//BE)
Do đó: ΔACB=ΔEBC
b: ΔACB=ΔEBC
=>AC=BE
mà AC=BD
nên BE=BD
=>ΔBDE cân tại B
c: ΔBDE cân tại B
=>\(\widehat{BDE}=\widehat{BED}\)
=>\(\widehat{BDC}=\widehat{BED}\)
mà \(\widehat{BED}=\widehat{ACD}\)(AC//BE)
nên \(\widehat{ACD}=\widehat{BDC}\)
Cho hình thang ABCD { AB// CD} có AB=BD. Qua B kẻ đường thẳng song song với AC, Cắt DC tại E. Chứng Minh Rằng:
a} tam giác BDE cân
b} tam giác ACD=tam giác BDC
c} ABCD là hình thang cân
Cho hình thang ABCD { AB// CD} có AB=BD. Qua B kẻ đường thẳng song song với AC, Cắt DC tại E. Chứng Minh Rằng:
a} tam giác BDE cân
b} tam giác ACD=tam giác BDC
c} ABCD là hình thang cân
Cho hình thang ABCD (AB // CD) có AC = BD. Gọi O là giao điểm của AC và BD. Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E.
a) Chứng minh tam giác BDE là tam giác cân.
b) Giả sử BDC = 45 độ . Chứng minh tam giác DOC vuông cân và tính diện tích của hình thang ABCD, biết BD = 6 (cm).
bạn chịu khó nhìn chữ viết tay nhé
cho hình thang ABCD (AB/CD) có AC=BD . Qua B kẻ đường thẳng song song với AC , cắt đường thẳng DC tại E :
a, chứng minh rằng tam giác BDE cân
b, chứng minh tam giác ACD= tam giác BDC
c, chúng minh hình thang ABCD là hình thang cân
a: Xét tứ giác ABEC có
AB//CE
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
Xét ΔBDE có BE=BD
nên ΔBDE cân tại B
b: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
c: Hình thang ABCD có AC=BD
nên ABCD là hình thang cân
Chứng minh định lý: "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng:
a) ΔBDE là tam giác cân.
b) ΔACD = ΔBDC
c) Hình thang ABCD là hình thang cân.
a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)
Theo giả thiết AC = BD (2)
Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân
Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.
Chứng minh định lý: "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại tại E. Chứng minh rằng: a) ΔBDE là tam giác cân. b) ΔACD = ΔBDC c) Hình thang ABCD là hình thang cân.
a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)
Theo giả thiết AC = BD (2)
Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\) cân
b ) Ta có : AC // BE
\(\Rightarrow\widehat{C}_1=\widehat{E}\) ( 3 )
Tam giác BDE cân tại B ( câu a ) nên \(\widehat{D}_1=\widehat{E}\) ( 4 )
Từ (3 ) và ( 4 ) \(\Rightarrow\widehat{C}_1=\widehat{D}_1\)
Xét \(\Delta ACD\) và \(\Delta BCD\) có AC = CD ( gt )
\(\widehat{C}_1=\widehat{D}_1\left(cmt\right)\)
CD là cạnh chung
Nên \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)
c ) Vì \(\Delta ACD=\Delta BCD\) ( câu b ) \(\Rightarrow\widehat{ADC}=\widehat{BCD}\)
Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.
Chúc bạn học tốt !!!
1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang ABCD(AB//CD)ABCD(AB//CD) có AC=BDAC=BD. Qua BB kẻ đường thẳng song song với ACAC, cắt đường thẳng DCDC tại EE. Chứng minh rằng:
a) BDEBDE là tam giác cân.
b) △ACD=△BDC.△ACD=△BDC.
c) Hình thang ABCDABCD là hình thang cân.
chúc hok tốt , k nha! sai cũng k
Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm, đường cao AH và tia phân giác BD (D ∈ AC) của góc B cắt nhau tại I
a) C/m: IA × BH = IH × BA
b) C/m: AB² = BH × BC. Tính AH, CH.
c) C/m: HI × DC = AD × AI
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng AH tại E. Tính BE.
a: Xét ΔBAH có BI là phân giác
nên IA/BA=IH/BH
=>IA*BH=BA*IH
b: ΔACB vuông tạiA có AH vuông góc BC
nên BA^2=BH*BC
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
CH=4^2/5=3,2cm
c: ΔBAC có BD là phân giác
nên DC/DA=BC/BA
=>DC/DA=BA/BH=AI/IH
=>DC*IH=DC*IA