Phan tich thanh nhan tu :
a, 2x^3 + x^2 - 4x -12
b, 5x^2 + 6xy + y^2
giup minh vs nhe
phan tich da thuc sau thanh nhan tu
x^3+2x^2+x+2
giup minh nhe cam on nhieu
Ta có:
\(x^3+2x^2+x+2\)
\(=x^2\left(x+2\right)+\left(x+2\right)\)
\(=\left(x^2+1\right)\left(x+2\right)\)
phan tich da thuc sau thanh nhan tu
x^3+3x^2+4x+2
6x^4-x^3-7x^2+x+1
giup minh nhe cam on nhieu
\(a.x^3+3x^2+4x+2\)
\(=x^3+x^2+2x^2+2x+2\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+2\right)\)
\(b.6x^4-x^3-7x^2+x+1\)
\(=6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1\)
\(=6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)
\(=\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)\)
\(=\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[3x\left(2x-1\right)+\left(2x-1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)\)
k giùm cái cho đỡ buồn!
Phan tich da thuc thanh nhan tu :
a, -x^3 * ( 2x + 1 )^2 + 49x
b, 125x^2 + 20y - 5y^2 - 20
c, ( 1+ 2x )*(1 - 2x ) - x*(x + 2 )*( x - 2 )
d, ( x - z )*(x + z) - y*(2x - y )
e, x^2 - 3x - 54
Giup minh voi nhe cac ban. Minh se tick cho.
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
phan tich da thuc thanh nhan tu
1) X3+ 6x2 + 12xy + 8
2) x4- 4x3- 8x2 + 8x
3) x4+ 2x3 + x2- y2
giup minh nhe cam on
1.\(x^3+6x^2+12xy+8=x^3+3.2x^2+3.2^2x+2^3=\left(x+2\right)^3\)
3.\(x^4+2x^3+x^2-y^2=\left(x^2\right)^2+2x^2.x+x^2-y^2\)\(=\left(x^2+x\right)^2-y^2=\left(x^2+x-y\right)\left(x^2+x+y\right)\)
k mình nha bn !!!!!!! cái 2 bn xem lại đề đi, rồi mình giải cho
OK bn, 2.\(x^4-4x^3-8x^2+8x=x\left(x^3-4x^2-8x+8\right)\)
z thui bn !!! hì ^.^
Giup minh vs a!
Phan tich thanh nhan tu
x2-y2-3x+3y
\(x^2-y^2-3x+3y\)
\(=\left(x^2-y^2\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
X^4+4x^3+5x^2+2x+1
Phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu: a,x^2-y^2-x+3y-2 b,x^3+y^3+6xy+x+y-10
Câu a:
\(x^2-y^2-x+3y-2=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)\)
\(< =>\left(x-\frac{1}{2}\right)^2-\left(y-\frac{3}{2}\right)^2\)
\(< =>\left(x-\frac{1}{2}+y-\frac{3}{2}\right)\left(x-\frac{1}{2}-y+\frac{3}{2}\right)=\left(x+y-2\right)\left(x-y+1\right)\)
Phan tich da thuc thanh nhan tu
A^3 +a^2b-a^2c-abc
A^4+a^3-a^2-a
Tim x biet
X^2+5x+6=0
2(x+3)-x^2-3x=0
X^2+4x+3=0
Giup e nhe mn e cam on nhieu ạ lop 8 . e can gấp giup nhé
a, x^3-x^2-4x^2+8x-4
b, 4x^2-25-(2x-5)2x+7
c, x^3+27+(x+3)(x-9)
d, 2x^2-2y^2+5x-5y
e, x^2-y^2-2y-1
phan tich da thuc thanh nhan tu